Effect of heat treatment on mechanical properties of forged aluminium alloy AA2219

Author(s):  
Mathew Alphonse ◽  
V.K. Bupesh Raja ◽  
M.S. Vivek ◽  
N.V. Sai Deepak Raj ◽  
M. Satya Sai Darshan ◽  
...  
2014 ◽  
Vol 699 ◽  
pp. 227-232
Author(s):  
Nurulhilmi Zaiedah Nasir ◽  
Mohd Ahadlin Mohd Daud ◽  
Mohd Zulkefli Selamat ◽  
Ahmad Rivai ◽  
Sivakumar Dhar Malingam

This paper investigated the effect of heat treatment on mechanical properties and microstructure of 6061 aluminium alloy. The aluminium alloys were examined in the heat treated conditions, using different quenching media, water and oil. The alloy was solution heat treated at temperature of 529oC for one, three and five hour respectively. Aging treatment was carried out at temperature of 160oC which is assumed to be the best temperature for ageing process. Hardness measurement was carried out using a Brinell Hardness Tester Machine. The results shows hardness and impact strength are inversely proportional to each other, as the hardness of 6061 aluminium alloy decreases and impact strength increases.


2007 ◽  
Vol 25 (5) ◽  
pp. 51-57
Author(s):  
Il-Cheon Lee ◽  
Yeong-Jong Song ◽  
Jin-Seon Gook ◽  
Dong-Joo Yoon ◽  
Byung-Il Kim

Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 608
Author(s):  
Anastasiya Toenjes ◽  
Heike Sonnenberg ◽  
Axel von Hehl

The mechanical properties of heat-treatable aluminium alloys are improved and adjusted by three different heat treatment steps, which include solution annealing, quenching, and aging. Due to metal-physical correlations, variations in heat treatment temperatures and times lead to different microstructural conditions with differences in the size and number of phases and their volume fraction in the microstructure. In this work, the investigations of the correlation between microhardness measurements on micro samples and the conventional mechanical properties (hardness, yield strength and tensile strength) of macro samples and the comparability of the different heat treatment states of micro and macro samples made of a hardenable aluminium alloy EN AW-6082 will be discussed. Using the correlations between the mechanical properties of micro samples and macro samples, the size of the samples and, thus, the testing cost and effort can be reduced.


2016 ◽  
Vol 877 ◽  
pp. 400-406 ◽  
Author(s):  
Hannes Fröck ◽  
Matthias Graser ◽  
Benjamin Milkereit ◽  
Michael Reich ◽  
Michael Lechner ◽  
...  

Precipitation hardening aluminium alloys are widely used for automotive applications. To enhance the application of aluminium profiles, improved formability is needed. Tailor Heat Treated Profiles (THTP) with locally different material properties attempt to increase formability e.g. in bending processes. Tailoring of local properties is obtained by a local short-term heat treatment, dissolving the initial precipitate state (retrogression) and still allowing subsequent ageing. In the present study, the dissolution and precipitation behaviour of the aluminium alloy EN AW-6060 T4 was investigated during heating with differential scanning calorimetry (DSC). Heating curves from 20 to 600 °C with heating rates of 0.01 up to 5 K/s were recorded. Interrupted heat treatments with different maximum temperatures were performed in a deformation dilatometer. Immediately afterwards, tensile tests were carried out at room temperature. The course of the recorded mechanical properties as a function of the maximum temperature is discussed with regard to the dissolution and precipitation behaviour during heating. Finally, the aging behaviour of the investigated alloy was recorded after different typical short-term heat treatments and is discussed with reference to the DSC‐curves. The correlation of the microstructure and the mechanical properties enables the derivation of optimal parameters for the development of THTP through a local softening.


Sign in / Sign up

Export Citation Format

Share Document