Influence of coir fibre and recycled aggregate on bond strength of pavement quality concrete

Author(s):  
K. Poongodi ◽  
P. Murthi ◽  
P. Revathi
2012 ◽  
Vol 166-169 ◽  
pp. 3233-3236 ◽  
Author(s):  
Jun Tao Li ◽  
Jin Jun Xu ◽  
Zong Ping Chen ◽  
Yi Li ◽  
Ying Liang

In order to research the interface bond-slip behaviors of recycled aggregate concrete-filled square steel tube (RACFSST), ten specimens using waste concrete were designed for launch test. The three changing parameters were concrete strength grade, embedded length and recycled coarse aggregate replacement rate. The load–slip curves of square steel tubes and recycled aggregate concrete were obtained, and starting bond strength and ultimate bond strength influenced by each changing parameter were analyzed. The results show that the replacement rate had a slight influence on the starting bond strength and ultimate bond strength, while the embedded length had the opposite effect. The shorter embedded length specimens had larger bond strength. The concrete strength had a relatively large influence on them.


2021 ◽  
Vol 267 ◽  
pp. 120919
Author(s):  
Ahmed Godat ◽  
Shaima Aldaweela ◽  
Hamda Aljaberi ◽  
Noura Al Tamimi ◽  
Ebtesam Alghafri

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Jia-Li Fu ◽  
Bing-Kang Liu ◽  
Jun-Wei Ma

Three recycled aggregate concrete (RAC) beam-column interior-joint specimens (including two modified recycled aggregate concrete interior joints with replacement of fly ash ratio of 15%) were tested under cyclic loading in order to study the bond behavior of the longitudinal steel bar at RAC joint. The tests obtained load-strain hysteresis curves of longitudinal bars. The relative bond strength of longitudinal bar in characteristic stages was calculated. The test results indicated that the longitudinal steel bar in RAC joint is able to supply a stable bond stress both in the full crack stage and in the ultimate stage, meaning that the requirements of stress transferring and displacement coordinating between RAC and reinforcements can be satisfied. The larger the diameter of steel bar, the more serious the bond strength degradation. The RAC with fly ash can improve the interface compactness and bond strength of recycled aggregate in full crack stage. When beam-column interface of concrete compression zone reaches ultimate strain, the compressive stress of the longitudinal reinforcement cannot be exerted. The bond stress of the steel bar cannot realize the pull and compressive stress conversion in the length of the core area of the joint owing to the stress hysteresis of the compression rebars.


Sign in / Sign up

Export Citation Format

Share Document