Bond strength of FRP bars in recycled-aggregate concrete

2021 ◽  
Vol 267 ◽  
pp. 120919
Author(s):  
Ahmed Godat ◽  
Shaima Aldaweela ◽  
Hamda Aljaberi ◽  
Noura Al Tamimi ◽  
Ebtesam Alghafri
2012 ◽  
Vol 166-169 ◽  
pp. 3233-3236 ◽  
Author(s):  
Jun Tao Li ◽  
Jin Jun Xu ◽  
Zong Ping Chen ◽  
Yi Li ◽  
Ying Liang

In order to research the interface bond-slip behaviors of recycled aggregate concrete-filled square steel tube (RACFSST), ten specimens using waste concrete were designed for launch test. The three changing parameters were concrete strength grade, embedded length and recycled coarse aggregate replacement rate. The load–slip curves of square steel tubes and recycled aggregate concrete were obtained, and starting bond strength and ultimate bond strength influenced by each changing parameter were analyzed. The results show that the replacement rate had a slight influence on the starting bond strength and ultimate bond strength, while the embedded length had the opposite effect. The shorter embedded length specimens had larger bond strength. The concrete strength had a relatively large influence on them.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Jia-Li Fu ◽  
Bing-Kang Liu ◽  
Jun-Wei Ma

Three recycled aggregate concrete (RAC) beam-column interior-joint specimens (including two modified recycled aggregate concrete interior joints with replacement of fly ash ratio of 15%) were tested under cyclic loading in order to study the bond behavior of the longitudinal steel bar at RAC joint. The tests obtained load-strain hysteresis curves of longitudinal bars. The relative bond strength of longitudinal bar in characteristic stages was calculated. The test results indicated that the longitudinal steel bar in RAC joint is able to supply a stable bond stress both in the full crack stage and in the ultimate stage, meaning that the requirements of stress transferring and displacement coordinating between RAC and reinforcements can be satisfied. The larger the diameter of steel bar, the more serious the bond strength degradation. The RAC with fly ash can improve the interface compactness and bond strength of recycled aggregate in full crack stage. When beam-column interface of concrete compression zone reaches ultimate strain, the compressive stress of the longitudinal reinforcement cannot be exerted. The bond stress of the steel bar cannot realize the pull and compressive stress conversion in the length of the core area of the joint owing to the stress hysteresis of the compression rebars.


2012 ◽  
Vol 166-169 ◽  
pp. 1391-1394 ◽  
Author(s):  
Bin Lei

In this paper, corrosion percentages ranged from 0 to 7.62% of steel rebar for pulling out specimens was controlled by the accelerated method of electrochemistry. According to the RILEM standard, pulling out test with dimensions of 200×200×200mm3 and recycled aggregate concrete (RAC) of C30 was carried out, and the load versus slip curves between RAC and corroded steel rebars with different corrosion percentages were recorded. Based on the experimental results, the effect of RAC and reinforcement corrosion on the bond behaviour between steel rebars was investigated. The results show that the bond strength between RAC and deformed bars increases with corrosion up to a certain amount, and then the bond strength decreases as the corrosion rate further increases, which is similar to that of normal concrete. However, the decreasing rate of the bond strength between RAC and corroded steel rebars is much faster than that between normal concrete and corroded steel bars. According to the testing results, the relationship of bond stress-slip between corroded bars and RAC was given in the end.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chunheng Zhou ◽  
Jiazhang Cao ◽  
Zongping Chen

Using recycled aggregate concrete (RAC) in steel-reinforced concrete structure is an effective way to eliminate the adverse effects of recycled aggregate, which has an excellent application prospect. Fire has a great destructiveness to steel-reinforced recycled aggregate concrete (SRRAC) structure; hence, the bond performance of SRRAC after high temperature, as the prerequisite for the composite between steel and RAC, is the key problem for structural safety and the corresponding safety assessment after fire. In this article, the residual bond behaviors of steel-recycled aggregate concrete interface after different high temperatures and spraying water cooling were studied through the push-out test. The failure modes and load–slip curves were examined. The ultimate bond strength, residual bond strength, and elastic bond shear stiffness of specimens after high temperature and cooling for the regime of spraying water were evaluated and compared to that of natural air. A parametric analysis of temperature, replacement percentage, and studs was conducted. A calculation approach for the ultimate bond strength and residual bond strength of SRRAC after high temperature was developed based on the sensitive analysis of gray system theory and regression analysis. Results showed that the bond properties of SRRAC specimens after high temperature were decreased as exposure temperature increased. The cooling regime of spraying water has a more significant influence on the ultimate strength and residual strength than that of natural air. The specimens with studs on both flange and web have the highest bond properties after high temperature. In all the factors, the number of studs showed the largest gray relational degree to the bond strength of SRRAC. The developed approach provided a reliable prediction of bond strength for SRRAC after high temperature.


Sign in / Sign up

Export Citation Format

Share Document