Evaluation of mix ratios of light weight concrete using geopolymer as binder

Author(s):  
Priyanka Mukkala ◽  
Chava Venkatesh ◽  
Syed Habibunnisa
2021 ◽  
Author(s):  
Aamer Abbas ◽  
◽  
Yaqoob Yaqoob ◽  
Ola Hussein ◽  
Ibrahim Al-Ani ◽  
...  

This study presents experimentally the bond behavior of light-weight concrete specimens with grouted reinforcing bars in comparison with conventional concrete specimens. A total of (9) pull-out specimens were studied; (3) specimens of conventional concrete, (3) specimens of light-weight concrete, and other (3) specimens of grouted light-weight concrete. Two variables are adopted in this investigation: specimen width and type of concrete (conventional concrete, light-weight concrete and grouted light-weight concrete). The study contains a discussion of the general behavior of the specimens in addition to the study of the ultimate bond capacity, maximum bond stresses and the relationship between the stress and the slip for different pull-out specimens. Results show that bond strength is highest for the largest specimen size (bond strength of grouted light-weight concrete specimen with specimen width 400 mm is higher than that of the specimen with (200 mm) width by about (13.13%)). Also, bond strength is highest for the grouted light-weight concrete specimen (bond strength of grouted light-weight concrete specimen is higher than conventional concrete specimen by (11.11%)).


2021 ◽  
Author(s):  
Ibrahim Al-Ani ◽  
◽  
Wan Hamidon ◽  
Wan Mohtar ◽  
Basma Alwachy ◽  
...  

Concrete is a major material used in the construction of buildings and structures in the world. Gravel and sand are the major ingredients of concrete but are non-renewable natural materials. Therefore, the utilisation of palm oil clinker (POC), a solid waste generated from palm oil industry is proposed to replace natural aggregate in this research to reduce the demand for natural aggregates. One mix of ordinary concrete as control concrete; while four mix proportions of oil palm clinker concrete were obtained by replacing 25 %, 50 %, 75 %, and 100 % of gravel and sand of control concrete with coarse and fine oil palm clinker respectively by volume, with same cement content and water cement ratio. Compressive strength test was carried out of concretes with different percentages of oil palm clinker; whereas water absorption test according to respective standard, were carried out to determine the durability properties of various mixes. Based on the results obtained, the study on the effect of percentage of clinker on strength and durability properties was drawn. According to ACI classification of light weight concrete only the 100 percentage replacement can achieve the definition of light weight concrete since its density less than 1900 kg/m3 and strength larger than 17 MPa. Eventually the 25 % replacement of the normal aggregate by the OPC will improve the strength and durability of the concrete.


2019 ◽  
Vol 8 (4) ◽  
pp. 8213-8216 ◽  

The study deals with the usage of perforated foam of various percentages to that of coarse aggregate to produce light weight concrete. With the day to day increase in industries and civilization’s expansion it has become very much necessary to produce structures with proficiently lesser weight. Its usage has become more proficient in construction of building in earthquake prone areas. This experimental investigation deals with the study of strength parameters of light weight concrete by performing various strength test and its various behavior s such as compression, tensile and flexure are studied by adding preformed foam at various proportions of 0%, 2%, 5%, 10%, 20% and 40%. All these strength parameter test are performed on 7th day, 14th day and 28th day respectively from day of casting


Sign in / Sign up

Export Citation Format

Share Document