Effect of silica fume and recycled concrete aggregate on the mechanical properties of GGBS based geopolymer concrete

Author(s):  
R. Premkumar ◽  
P. Hariharan ◽  
S. Rajesh
2021 ◽  
Vol 2114 (1) ◽  
pp. 012061
Author(s):  
Layth Al-Jaberi ◽  
Al-Saraj K. Wissam Al-Saraj ◽  
Al-Serai J. Sahar Al-Serai

Abstract This work is a Scanning Electron Microscope (SEM) study to investigate the behaviour of Metakaolin based GPC mixes with and without cement and containing recycled concrete aggregate. Three (3) GPC mixes and Normal Concrete mix (NC) designed mingled and tested to achieve the goals of this research. Control specimens were cast from each mix to determine the mechanical properties for each mix. (12) SEM micrographs from carefully selected samples. SEM study confirmed that the presence of recycled concrete aggregate can be a source of generating cracks and fissures. The un-hydrated cement particles in recycled aggregate can contribute to further hydration when contact with water. Also, the metakaolin based GPC matrix with natural aggregate showed enormous with unrealized morphology, which indicates amorphous. Finally, the replacement of 20% of Metakaolin with cement led to enhance mechanical properties.


2020 ◽  
Vol 12 (8) ◽  
pp. 3154 ◽  
Author(s):  
Hedelvan Emerson Fardin ◽  
Adriana Goulart dos Santos

This research aimed to investigate the mechanical and physical properties of Roller Compacted Concrete (RCC) used with Recycled Concrete Aggregate (RCA) as a replacement for natural coarse aggregate. The maximum dry density method was adopted to prepare RCC mixtures with 200 kg/m³ of cement content and coarse natural aggregates in the concrete mixture. Four RCC mixtures were produced from different RCA incorporation ratios (0%, 5%, 15%, and 30%). The compaction test, compressive strength, splitting tensile strength, flexural tensile strength, and modulus of elasticity, porosity, density, and water absorption tests were performed to analyze the mechanical and physical properties of the mixtures. One-way Analysis of Variance (ANOVA) was used to identify the influences of RCA on RCC’s mechanical properties. As RCA increased in mixtures, some mechanical properties were observed to decrease, such as modulus of elasticity, but the same was not observed in the splitting tensile strength. All RCCs displayed compressive strength greater than 15.0 MPa at 28 days, splitting tensile strength above 1.9 MPa, flexural tensile strength above 2.9 MPa, and modulus of elasticity above 19.0 GPa. According to Brazilian standards, the RCA added to RCC could be used for base layers.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4612
Author(s):  
Dong Viet Phuong Tran ◽  
Abbas Allawi ◽  
Amjad Albayati ◽  
Thi Nguyen Cao ◽  
Ayman El-Zohairy ◽  
...  

This paper reports an evaluation of the properties of medium-quality concrete incorporating recycled coarse aggregate (RCA). Concrete specimens were prepared with various percentages of the RCA (25%, 50%, 75%, and 100%). The workability, mechanical properties, and durability in terms of abrasion of cured concrete were examined at different ages. The results reveal insignificant differences between the recycled concrete (RC) and reference concrete in terms of the mechanical and durability-related measurements. Meanwhile, the workability of the RC reduced vastly since the replacement of the RCA reached 75% and 100%. The ultrasound pulse velocity (UPV) results greatly depend on the porosity of concrete and the RC exhibited higher porosity than that of the reference concrete, particularly at the transition zone between the RCA and the new paste. Therefore, the sound transmission in the RC required longer times than that in the reference concrete. Moreover, a predictive equation relating the compressive strength to the UPV was developed.


2019 ◽  
Vol 205 ◽  
pp. 519-528 ◽  
Author(s):  
Mahdi Koushkbaghi ◽  
Pedram Alipour ◽  
Behzad Tahmouresi ◽  
Ehsan Mohseni ◽  
Ashkan Saradar ◽  
...  

2012 ◽  
Vol 193-194 ◽  
pp. 1371-1375
Author(s):  
Yong San Cheng ◽  
Ke Qiang Yu ◽  
Shuang Xi Wang

In order to better understand the recycled concrete aggregate, it is essential to investigate the different mixture ratio in it. For determining the better mixture ratio of recycled concrete aggregate, the experimental investigation was conducted by making use of recycled concrete aggregate of different ratio instead of small stones in concrete, while maintaining the proportion of other raw materials of concrete unchanged. Its mechanical properties were also investigated. It is found that the better materials proportion of recycled concrete is that sand: recycled aggregate: water= 1: 1.8 : 2.1: 0.55.


Sign in / Sign up

Export Citation Format

Share Document