Exercise-induced AMPK activity in skeletal muscle: Role in glucose uptake and insulin sensitivity

2013 ◽  
Vol 366 (2) ◽  
pp. 204-214 ◽  
Author(s):  
Martin Friedrichsen ◽  
Brynjulf Mortensen ◽  
Christian Pehmøller ◽  
Jesper B. Birk ◽  
Jørgen F.P. Wojtaszewski
2018 ◽  
Vol 315 (5) ◽  
pp. E859-E871 ◽  
Author(s):  
Haiyan Wang ◽  
Edward B. Arias ◽  
Mark W. Pataky ◽  
Laurie J. Goodyear ◽  
Gregory D. Cartee

A single exercise session can increase insulin-stimulated glucose uptake (GU) by skeletal muscle, concomitant with greater Akt substrate of 160 kDa (AS160) phosphorylation on Akt-phosphosites (Thr642 and Ser588) that regulate insulin-stimulated GU. Recent research using mouse skeletal muscle suggested that ex vivo 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) or electrically stimulated contractile activity-inducing increased γ3-AMPK activity and AS160 phosphorylation on a consensus AMPK-motif (Ser704) resulted in greater AS160 Thr642 phosphorylation and GU by insulin-stimulated muscle. Our primary goal was to determine whether in vivo exercise that increases insulin-stimulated GU in rat skeletal muscle would also increase γ3-AMPK activity and AS160 site-selective phosphorylation (Ser588, Thr642, and Ser704) immediately postexercise (IPEX) and/or 3 h postexercise (3hPEX). Epitrochlearis muscles isolated from sedentary and exercised (2-h swim exercise; studied IPEX and 3hPEX) rats were incubated with 2-deoxyglucose to determine GU (without insulin at IPEX; without or with insulin at 3hPEX). Muscles were also assessed for γ1-AMPK activity, γ3-AMPK activity, phosphorylated AMPK (pAMPK), and phosphorylated AS160 (pAS160). IPEX versus sedentary had greater γ3-AMPK activity, pAS160 (Ser588, Thr642, Ser704), and GU with unaltered γ1-AMPK activity. 3hPEX versus sedentary had greater γ3-AMPK activity, pAS160 Ser704, and GU with or without insulin; greater pAS160 Thr642 only with insulin; and unaltered γ1-AMPK activity. These results using an in vivo exercise protocol that increased insulin-stimulated GU in rat skeletal muscle are consistent with the hypothesis that in vivo exercise-induced enhancement of γ3-AMPK activation and AS160 Ser704 IPEX and 3hPEX are important for greater pAS160 Thr642 and enhanced insulin-stimulated GU by skeletal muscle.


2018 ◽  
Vol 1 (5) ◽  
Author(s):  
Hiroyuki Masuda ◽  
Tatsuhiko Yoshimura ◽  
Keiichi Koshinaka ◽  
Kentaro Kawanaka

  Objective A single bout of exercise can enhance glucose uptake in skeletal muscle. It is well established that AMP-activated protein kinase (AMPK) activation is required for stimulation of glucose uptake by exercise. After the initial phosphorylation of glucose by hexokinase, glucose is further utilized to mitochondrial oxidation during exercise. The direct or functional interaction between hexokinase and Akt may act to integrate glucose metabolism in working muscle. Hence, AMPK and Akt activation would be cooperatively regulated exercise-induced activation of glucose metabolism. Although exercise at the lactate threshold (LT) and above the LT sharply increase glucose uptake via increasing AMPK activity, whether LT exercise can also increase Akt activity is still unknown. Therefore, we examined the AMPK and Akt activity immediately after several intensities of exercise. Methods Male wistar rats (250-270 g) were randomly assigned to 3 groups: Resting control (sedentary, n=16), Low-intensity exercise (LIE: 10 m/min for 30 min, n=8), LT intensity exercise 1 (LTE1: 17.5 m/min for 30 min, n=8), LT intensity exercise 2 (LTE2: 22.5 m/min for 30 min, n=8), and High-intensity exercise (HE: 27.5 m/min for 30 min, n=8). Immediately after each treadmill exercise, plantaris and soleus muscles were dissected. Results LIE exercise did not changed AMPK phosphorylation site (Thr172), indicator of AMPK activity, and Akt phosphorylation site (Ser473, Thr308), indicator of Akt activity, in these muscles compared with resting control. At and above LTE1 exercise increased the phosphorylation of AMPK in these tissues. At and above LTE2 exercise increased the phosphorylation of Akt in these tissues. Therefore, increasing AMPK and Akt activity immediately after LT exercise possibly involved with regulating glucose metabolism. Conclusions Phosphorylation of AMPK and Akt is increased immediately after at and above LT exercise in rat soleus and plantaris muscle.  


2020 ◽  
Vol 128 (2) ◽  
pp. 410-421
Author(s):  
Mark W. Pataky ◽  
Edward B. Arias ◽  
Haiyan Wang ◽  
Xiaohua Zheng ◽  
Gregory D. Cartee

One exercise session can increase subsequent insulin-stimulated glucose uptake (ISGU) by skeletal muscle. Prior research on healthy muscle suggests that enhanced postexercise ISGU depends on elevated γ3-AMPK activity leading to greater phosphorylation of Akt substrate of 160 kDa (pAS160) on an AMPK-phosphomotif (Ser704). Phosphorylation of AS160Ser704, in turn, may favor greater insulin-stimulated pAS160 on an Akt-phosphomotif (Thr642) that regulates ISGU. Accordingly, we tested if exercise-induced increases in γ3-AMPK activity and pAS160 on key regulatory sites accompany improved ISGU at 3 h postexercise (3hPEX) in insulin-resistant muscle. Rats fed a high-fat diet (HFD; 2-wk) that induces insulin resistance either performed acute swim-exercise (2 h) or were sedentary (SED). SED rats fed a low-fat diet (LFD; 2 wk) served as healthy controls. Isolated epitrochlearis muscles from 3hPEX and SED rats were analyzed for ISGU, pAS160, pAkt2 (Akt-isoform that phosphorylates pAS160Thr642), and γ1-AMPK and γ3-AMPK activity. ISGU was lower in HFD-SED muscles versus LFD-SED, but this decrement was eliminated in the HFD-3hPEX group. γ3-AMPK activity, but not γ1-AMPK activity, was elevated in HFD-3hPEX muscles versus both SED controls. Furthermore, insulin-stimulated pAS160Thr642, pAS160Ser704, and pAkt2Ser474 in HFD-3hPEX muscles were elevated above HFD-SED and equal to values in LFD-SED muscles, but insulin-independent pAS160Ser704 was unaltered at 3hPEX. These results demonstrated, for the first time in an insulin-resistant model, that the postexercise increase in ISGU was accompanied by sustained enhancement of γ3-AMPK activation and greater pAkt2Ser474. Our working hypothesis is that these changes along with enhanced insulin-stimulated pAS160 increase ISGU of insulin-resistant muscles to values equaling insulin-sensitive sedentary controls. NEW & NOTEWORTHY Earlier research focusing on signaling events linked to increased insulin sensitivity in muscle has rarely evaluated insulin resistant muscle after exercise. We assessed insulin resistant muscle after an exercise protocol that improved insulin-stimulated glucose uptake. Prior exercise also amplified several signaling steps expected to favor enhanced insulin-stimulated glucose uptake: increased γ3-AMP-activated protein kinase activity, greater insulin-stimulated Akt2 phosphorylation on Ser474, and elevated insulin-stimulated Akt substrate of 160 kDa phosphorylation on Ser588, Thr642, and Ser704.


2013 ◽  
Vol 441 (1) ◽  
pp. 36-41 ◽  
Author(s):  
Shin-ichi Ikeda ◽  
Yoshifumi Tamura ◽  
Saori Kakehi ◽  
Kageumi Takeno ◽  
Minako Kawaguchi ◽  
...  

2008 ◽  
Vol 28 (18) ◽  
pp. 5634-5645 ◽  
Author(s):  
Francesco Oriente ◽  
Luis Cesar Fernandez Diaz ◽  
Claudia Miele ◽  
Salvatore Iovino ◽  
Silvia Mori ◽  
...  

ABSTRACT We have examined glucose homeostasis in mice hypomorphic for the homeotic transcription factor gene Prep1. Prep1-hypomorphic (Prep1 i / i ) mice exhibit an absolute reduction in circulating insulin levels but normal glucose tolerance. In addition, these mice exhibit protection from streptozotocin-induced diabetes and enhanced insulin sensitivity with improved glucose uptake and insulin-dependent glucose disposal by skeletal muscle. This muscle phenotype does not depend on reduced expression of the known Prep1 transcription partner, Pbx1. Instead, in Prep1 i / i muscle, we find normal Pbx1 but reduced levels of the recently identified novel Prep1 interactor p160. Consistent with this reduction, we find a muscle-selective increase in mRNA and protein levels of PGC-1α, accompanied by enhanced expression of the GLUT4 transporter, responsible for insulin-stimulated glucose uptake in muscle. Indeed, using L6 skeletal muscle cells, we induced the opposite effects by overexpressing Prep1 or p160, but not Pbx1. In vivo skeletal muscle delivery of p160 cDNA in Prep1 i / i mice also reverses the molecular phenotype. Finally, we show that Prep1 controls the stability of the p160 protein. We conclude that Prep1 controls insulin sensitivity through the p160-GLUT4 pathway.


Author(s):  
Hye Kyoung Sung ◽  
Patricia L. Mitchell ◽  
Sean Gross ◽  
Andre Marette ◽  
Gary Sweeney

Adiponectin is well established to mediate many beneficial metabolic effects, and this has stimulated great interest in development and validation of adiponectin receptor agonists as pharmaceutical tools. This study investigated the effects of ALY688, a peptide-based adiponectin receptor agonist, in rat L6 skeletal muscle cells. ALY688 significantly increased phosphorylation of several adiponectin downstream effectors, including AMPK, ACC and p38MAPK, assessed by immunoblotting and immunofluorescence microscopy. Temporal analysis using cells expressing an Akt biosensor demonstrated that ALY688 enhanced insulin sensitivity. This effect was associated with increased insulin-stimulated Akt and IRS-1 phosphorylation. The functional metabolic significance of these signaling effects was examined by measuring glucose uptake in myoblasts stably overexpressing the glucose transporter GLUT4. ALY688 treatment both increased glucose uptake itself and enhanced insulin-stimulated glucose uptake. In the model of high glucose/high insulin (HGHI)-induced insulin resistant cells, both temporal studies using the Akt biosensor as well as immunoblotting assessing Akt and IRS-1 phosphorylation indicated that ALY688 significantly reduced insulin resistance. Importantly, we observed that ALY688 administration to high-fat high sucrose fed mice also improve glucose handling, validating its efficacy in vivo. In summary, these data indicate that ALY688 activates adiponectin signaling pathways in skeletal muscle, leading to improved insulin sensitivity and beneficial metabolic effects.


Author(s):  
Yingzi He ◽  
Ruojun Qiu ◽  
Beibei Wu ◽  
Weiwei Gui ◽  
Xihua Lin ◽  
...  

Exercise improves obesity-induced insulin resistance and metabolic disorders via mechanisms that remain unclear. Here, we show that the levels of the hepatokine transthyretin (TTR) in circulation are elevated in insulin-resistant individuals including high-fat diet (HFD)-induced obese mice, db/db mice, and patients with metabolic syndrome. Liver Ttr mRNA and circulating TTR levels were reduced in mice by treadmill training, as was the TTR levels in quadriceps femoris muscle; however, AMPK signalling activity was enhanced. Transgenic overexpression of TTR or injection of purified TTR triggered insulin resistance in mice fed on regular chow (RC). Furthermore, TTR overexpression reduced the beneficial effects of exercise on insulin sensitivity in HFD-fed mice. TTR was internalized by muscle cells via the membrane receptor Grp78 and the internalization into the quadriceps femoris was reduced by treadmill training. The TTR/Grp78 combination in C2C12 cells was increased, whereas the AMPK activity of C2C12 cells was decreased as the TTR concentration rose. Additionally, Grp78 silencing prevented the TTR internalization and reversed its inhibitory effect on AMPK activity in C2C12 cells. Our study suggests that elevated circulating TTR may contribute to insulin resistance and counteract the exercise-induced insulin sensitivity improvement; the TTR suppression might be an adaptive response to exercise through enhancing AMPK activity in skeletal muscles.


2011 ◽  
pp. 511-519 ◽  
Author(s):  
G. G. SCHWEITZER ◽  
C. M. CASTORENA ◽  
T. HAMADA ◽  
K. FUNAI ◽  
E. B. ARIAS ◽  
...  

Bradykinin can enhance skeletal muscle glucose uptake (GU), and exercise increases both bradykinin production and muscle insulin sensitivity, but bradykinin’s relationship with post-exercise insulin action is uncertain. Our primary aim was to determine if the B2 receptor of bradykinin (B2R) is essential for the post-exercise increase in GU by insulin-stimulated mouse soleus muscles. Wildtype (WT) and B2R knockout (B2RKO) mice were sedentary or performed 60 minutes of treadmill exercise. Isolated soleus muscles were incubated with [3H]-2-deoxyglucose ±insulin (60 or 100 μU/ml). GU tended to be greater for WT vs. B2RKO soleus with 60 μU/ml insulin (P=0.166) and was significantly greater for muscles with 100 μU/ml insulin (P<0.05). Both genotypes had significant exercise-induced reductions (P<0.05) in glycemia and insulinemia, and the decrements for glucose (~14 %) and insulin (~55 %) were similar between genotypes. GU tended to be greater for exercised vs. sedentary soleus with 60 μU/ml insulin (P=0.063) and was significantly greater for muscles with 100 μU/ml insulin (P<0.05). There were no significant interactions between genotype and exercise for blood glucose, plasma insulin or GU. These results indicate that the B2R is not essential for the exercise-induced decrements in blood glucose or plasma insulin or for the post-exercise increase in GU by insulin-stimulated mouse soleus muscle.


2012 ◽  
Vol 303 (7) ◽  
pp. E908-E916 ◽  
Author(s):  
Jiarong Liu ◽  
Wei Zhang ◽  
Gin C. Chuang ◽  
Helliner S. Hill ◽  
Ling Tian ◽  
...  

We have suggested previously that Tribbles homolog 3 (TRIB3), a negative regulator of Akt activity in insulin-sensitive tissues, could mediate glucose-induced insulin resistance in muscle under conditions of chronic hyperglycemia (Liu J, Wu X, Franklin JL, Messina JL, Hill HS, Moellering DR, Walton RG, Martin M, Garvey WT. Am J Physiol Endocrinol Metab 298: E565–E576, 2010). In the current study, we have assessed short-term physiological regulation of TRIB3 in skeletal muscle and adipose tissues by nutrient excess and fasting as well as TRIB3's ability to modulate glucose transport and mitochondrial oxidation. In Sprague-Dawley rats, we found that short-term fasting enhanced insulin sensitivity concomitantly with decrements in TRIB3 mRNA (66%, P < 0.05) and protein (81%, P < 0.05) in muscle and increments in TRIB3 mRNA (96%, P < 0.05) and protein (∼10-fold, P < 0.05) in adipose tissue compared with nonfasted controls. On the other hand, rats fed a Western diet for 7 days became insulin resistant concomitantly with increments in TRIB3 mRNA (155%, P < 0.05) and protein (69%, P = 0.0567) in muscle and a decrease in the mRNA (76%, P < 0.05) and protein (70%, P < 0.05) in adipose. In glucose transport and mitochondria oxidation studies using skeletal muscle cells, we found that stable TRIB3 overexpression impaired insulin-stimulated glucose uptake without affecting basal glucose transport and increased both basal glucose oxidation and the maximal uncoupled oxygen consumption rate. With stable knockdown of TRIB3, basal and insulin-stimulated glucose transport rates were increased, whereas basal glucose oxidation and the maximal uncoupled oxygen consumption rate were decreased. In conclusion, TRIB3 impacts glucose uptake and oxidation oppositely in muscle and fat according to levels of nutrient availability. The above data for the first time implicate TRIB3 as a potent physiological regulator of insulin sensitivity and mitochondrial glucose oxidation under conditions of nutrient deprivation and excess.


Sign in / Sign up

Export Citation Format

Share Document