Urinary metabolomic profiling in mice with diet-induced obesity and type 2 diabetes mellitus after treatment with metformin, vildagliptin and their combination

2016 ◽  
Vol 431 ◽  
pp. 88-100 ◽  
Author(s):  
Helena Pelantová ◽  
Martina Bugáňová ◽  
Martina Holubová ◽  
Blanka Šedivá ◽  
Jana Zemenová ◽  
...  
2010 ◽  
Vol 31 (2) ◽  
pp. 261-261
Author(s):  
Alexander M. Owyang ◽  
Kathrin Maedler ◽  
Lisa Gross ◽  
Johnny Yin ◽  
Lin Esposito ◽  
...  

ABSTRACT Recent evidence suggests that IL-1β-mediated glucotoxicity plays a critical role in type 2 diabetes mellitus. Although previous work has shown that inhibiting IL-1β can lead to improvements in glucose control and β-cell function, we hypothesized that more efficient targeting of IL-1β with a novel monoclonal antibody, XOMA 052, would reveal an effect on additional parameters affecting metabolic disease. In the diet-induced obesity model, XOMA 052 was administered to mice fed either normal or high-fat diet (HFD) for up to 19 wk. XOMA 052 was administered as a prophylactic treatment or as a therapy. Mice were analyzed for glucose tolerance, insulin tolerance, insulin secretion, and lipid profile. In addition, the pancreata were analyzed for β-cell apoptosis, proliferation, and β-cell mass. Mice on HFD exhibited elevated glucose and glycated hemoglobin levels, impaired glucose tolerance and insulin secretion, and elevated lipid profile, which were prevented by XOMA 052. XOMA 052 also reduced β-cell apoptosis and increased β-cell proliferation. XOMA 052 maintained the HFDinduced compensatory increase in β-cell mass, while also preventing the loss in β-cell mass seen with extended HFD feeding. Analysis of fasting insulin and glucose levels suggests that XOMA 052 prevented HFD-induced insulin resistance. These studies provide new evidence that targeting IL-1β in vivo could improve insulin sensitivity and lead to β-cell sparing. This is in addition to previously reported benefits on glycemic control. Taken together, the data presented suggest that XOMA 052 could be effective for treating many aspects of type 2 diabetes mellitus.


Author(s):  
Sarita Mulkalwar ◽  
Tanya Gupta ◽  
Vishwanath Kulkarni ◽  
A. V. Tilak ◽  
B. T. Rane ◽  
...  

Background: As of 2018, 2.1 billion people nearly 30% of the world’s population are either obese or overweight. Worldwide obesity has nearly tripled since 1975. It is an emerging health problem with major adverse effects on health. It is a risk factor for many chronic diseases but is best known for its role in metabolic syndrome, which can lead to type 2 diabetes mellitus as well as cardiovascular diseases. Anti-obesity drugs are available but have many side effects. Voglibose, an antidiabetic drug, is an alpha glucosidase inhibitor which shows promising results in the reduction of body weight with minimal side effects.Methods: Voglibose (7 mg/kg) was administered to rats fed with normal laboratory chows and high fat diet to see its effect on body weight, body mass index, abdominal and thoracic circumference, and lipid profile at the end of 12 weeks.Results: Administration of voglibose significantly reduced food consumption, feed efficiency and increase in body weight induced by high fat diet in rats. Rats fed on normal diet also showed reductions in the same parameters, suggesting its weight lowering effect. Reductions in the anthropometric measurements, hypolipidemic effects and glucose lowering effects were also observed.Conclusions: Voglibose prevented high fat diet-induced obesity and improvement in metabolic profile, which ultimately has systemic effects on body weight in rats. Further studies are needed to see its potential therapeutic use in obese patients with type 2 diabetes mellitus, and related complications.


2019 ◽  
Vol 317 (6) ◽  
pp. G763-G772 ◽  
Author(s):  
Tien S. Dong ◽  
Hui-Hua Chang ◽  
Meg Hauer ◽  
Venu Lagishetty ◽  
William Katzka ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC)’s growing incidence has been linked to the rise in obesity and type 2 diabetes mellitus. In previous work, we have shown that metformin can prevent the increased incidence of PDAC in a KrasG12D mouse model subjected to a diet high in fat and calories (HFCD). One potential way that metformin can affect the host is through alterations in the gut microbiome. Therefore, we investigated microbial associations with PDAC development and metformin use in the same mouse model. Lox-Stop-Lox Kras G12D/+ (LSL-Kras G12D/+); p48-Cre (KC) mice were given control diet, HFCD, or HFCD with 5 mg/mL metformin in drinking water for 3 mo. At the end of the 3 mo, 16S rRNA sequencing was performed to characterize microbiome composition of duodenal mucosal, duodenal luminal, and cecal luminal samples. KC mice on an HFCD demonstrated depletion of intact acini and formation of advanced pancreatic intraepithelial neoplasia. This effect was completely abrogated by metformin treatment. HFCD was associated with significant changes in microbial composition and diversity in the duodenal mucosa and lumen, much of which was prevented by metformin. In particular, Clostridium sensu stricto was negatively correlated with percent intact acini and seemed to be inhibited by the addition of metformin while on an HFCD. Administration of metformin eliminated PDAC formation in KC mice. This change was associated with significant microbial changes in both the mucosal and luminal microbiome of the duodenum. This suggests that the microbiome may be a potential mediator of the chemopreventive effects of metformin. NEW & NOTEWORTHY Pancreatic ductal adenocarcinoma (PDAC)’s growing incidence has been linked to the rise in obesity and type 2 diabetes mellitus. Administration of metformin eliminated PDAC formation in KC mice with diet-induced obesity. This change was associated with significant microbial changes in both the mucosal and luminal microbiome of the duodenum. This suggests that the microbiome may be a potential mediator of the chemopreventive effects of metformin.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Ahlke Heydemann

Type 2 diabetes mellitus (T2DM) is a worldwide epidemic, which by all predictions will only increase. To help in combating the devastating array of phenotypes associated with T2DM a highly reproducible and human disease-similar mouse model is required for researchers. The current options are genetic manipulations to cause T2DM symptoms or diet induced obesity and T2DM symptoms. These methods to model human T2DM have their benefits and their detractions. As far as modeling the majority of T2DM cases, HFD establishes the proper etiological, pathological, and treatment options. A limitation of HFD is that it requires months of feeding to achieve the full spectrum of T2DM symptoms and no standard protocol has been established. This paper will attempt to rectify the last limitation and argue for a standard group of HFD protocols and standard analysis procedures.


Endocrinology ◽  
2010 ◽  
Vol 151 (6) ◽  
pp. 2515-2527 ◽  
Author(s):  
Alexander M. Owyang ◽  
Kathrin Maedler ◽  
Lisa Gross ◽  
Johnny Yin ◽  
Lin Esposito ◽  
...  

Recent evidence suggests that IL-1β-mediated glucotoxicity plays a critical role in type 2 diabetes mellitus. Although previous work has shown that inhibiting IL-1β can lead to improvements in glucose control and β-cell function, we hypothesized that more efficient targeting of IL-1β with a novel monoclonal antibody, XOMA 052, would reveal an effect on additional parameters affecting metabolic disease. In the diet-induced obesity model, XOMA 052 was administered to mice fed either normal or high-fat diet (HFD) for up to 19 wk. XOMA 052 was administered as a prophylactic treatment or as a therapy. Mice were analyzed for glucose tolerance, insulin tolerance, insulin secretion, and lipid profile. In addition, the pancreata were analyzed for β-cell apoptosis, proliferation, and β-cell mass. Mice on HFD exhibited elevated glucose and glycated hemoglobin levels, impaired glucose tolerance and insulin secretion, and elevated lipid profile, which were prevented by XOMA 052. XOMA 052 also reduced β-cell apoptosis and increased β-cell proliferation. XOMA 052 maintained the HFD-induced compensatory increase in β-cell mass, while also preventing the loss in β-cell mass seen with extended HFD feeding. Analysis of fasting insulin and glucose levels suggests that XOMA 052 prevented HFD-induced insulin resistance. These studies provide new evidence that targeting IL-1β in vivo could improve insulin sensitivity and lead to β-cell sparing. This is in addition to previously reported benefits on glycemic control. Taken together, the data presented suggest that XOMA 052 could be effective for treating many aspects of type 2 diabetes mellitus.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1576-P
Author(s):  
SHAHEN YASHPAL ◽  
ANGELA D. LIESE ◽  
LYNNE E. WAGENKNECHT ◽  
STEVEN M. HAFFNER ◽  
LUKE W. JOHNSTON ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Chunyu Zhou ◽  
Qing Zhang ◽  
Liqian Lu ◽  
Jiao Wang ◽  
Dongwei Liu ◽  
...  

Background: Diabetic kidney disease (DKD) is a highly prevalent complication in patients with type 2 diabetes mellitus (T2DM). Patients with DKD exhibit changes in plasma levels of amino acids (AAs) due to insulin resistance, reduced protein intake, and impaired renal transport of AAs. The role of AAs in distinguishing DKD from T2DM and healthy controls has yet to be elucidated. This study aimed to investigate the metabolomic profiling of AAs in the plasma of patients with DKD.Methods: We established an ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method to detect the plasma levels of the 20 AAs in healthy controls (n = 112), patients with T2DM (n = 101), and patients with DKD (n = 101). The key AAs associated with DKD were identified by orthogonal partial least-squares discriminant analysis (OPLS-DA) models with loading plots, shared and unique structures (SUS) plots, and variable importance in projection (VIP) values. The discrimination accuracies of these key AAs were then determined by analyses of receiver-operating characteristic (ROC) curves.Results: Metabolomic profiling of plasma revealed significant alterations in levels of the 20 AAs in patients with DKD when compared to those in either patients with T2DM or healthy controls. Metabolomic profiling of the 20 AAs showed a visual separation of patients with DKD from patients with T2DM and healthy controls in OPLS-DA models. Based on loading plots, SUS plots, and VIP values in the OPLS-DA models, we identified valine and cysteine as potential contributors to the progression of DKD from patients with T2DM. Histidine was identified as a key mediator that could distinguish patients with DKD from healthy controls. Plasma levels of histidine and valine were decreased significantly in patients with DKD with a decline in kidney function, and had excellent performance in distinguishing patients with DKD from patients with T2DM and healthy controls according to ROC curves.Conclusion: Plasma levels of histidine and valine were identified as the main AAs that can distinguish patients with DKD. Our findings provide new options for the prevention, treatment, and management of DKD.


2018 ◽  
Vol 188 (1) ◽  
pp. 165-184 ◽  
Author(s):  
Petra Tomášová ◽  
Martina Bugáňová ◽  
Helena Pelantová ◽  
Martina Holubová ◽  
Blanka Šedivá ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document