Hyperbolic tangent algorithm for periodic effect cancellation in sub-pixel resolution edge displacement measurement

Measurement ◽  
2009 ◽  
Vol 42 (8) ◽  
pp. 1226-1232 ◽  
Author(s):  
Angela Cantatore ◽  
Alfredo Cigada ◽  
Remo Sala ◽  
Emanuele Zappa
GIS Business ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 383-394
Author(s):  
K. Shalini ◽  
K.Rajasekhar

In this paper, the effect of Slip and Hall effects on the flow of Hyperbolic tangent fluid through a porous medium in a planar channel with peristalsis under the assumption of long wavelength is investigated. A Closed form solutions are obtained for axial velocity and pressure gradient by employing perturbation technique. The effects of various emerging parameters on the pressure gradient, time averaged volume flow rate and frictional force are discussed with the aid of graphs.


2020 ◽  
Vol 14 (1) ◽  
pp. 012004
Author(s):  
Yosuke Tanaka ◽  
Kyosuke Yamaguchi ◽  
Kenta Yamamoto ◽  
Yoshiki Yamada

2012 ◽  
Vol 170-173 ◽  
pp. 2924-2928
Author(s):  
Sheng Biao Chen ◽  
Yun Zhi Tan

In order to measure the water drainage volume in soil mechanical tests accurately, it develop a new method which is based on principles of optics. And from both physical and mathematic aspects, it deduces the mathematic relationship between micro change in displacement and the increment projected on screen. The result shows that total reflection condition is better than refraction condition. What’s more, the screen could show the water volume micro variation clearly, so it can improve the accuracy of measurement.


2021 ◽  
Vol 12 (11) ◽  
pp. 4111-4118
Author(s):  
Qi Zhang ◽  
Yunlong Shao ◽  
Boye Li ◽  
Yuanyuan Wu ◽  
Jingying Dong ◽  
...  

We achieved the low-damage spatial puncture of single cells at specific visual points with an accuracy of <65 nm.


2021 ◽  
Vol 13 (6) ◽  
pp. 1098
Author(s):  
Egor Prikaziuk ◽  
Peiqi Yang ◽  
Christiaan van der Tol

In this study, we demonstrate that the Google Earth Engine (GEE) dataset of Sentinel-3 Ocean and Land Color Instrument (OLCI) level-1 deviates from the original Copernicus Open Access Data Hub Service (DHUS) data by 10–20 W m−2 sr−1μμm−1 per pixel per band. We compared GEE and DHUS single pixel time series for the period from April 2016 to September 2020 and identified two sources of this discrepancy: the ground pixel position and reprojection. The ground pixel position of OLCI product can be determined in two ways: from geo-coordinates (DHUS) or from tie-point coordinates (GEE). We recommend using geo-coordinates for pixel extraction from the original data. When the Sentinel Application Platform (SNAP) Pixel Extraction Tool is used, an additional distance check has to be conducted to exclude pixels that lay further than 212 m from the point of interest. Even geo-coordinates-based pixel extraction requires the homogeneity of the target area at a 700 m diameter (49 ha) footprint (double of the pixel resolution). The GEE OLCI dataset can be safely used if the homogeneity assumption holds at 2700 m diameter (9-by-9 OLCI pixels) or if the uncertainty in the radiance of 10% is not critical for the application. Further analysis showed that the scaling factors reported in the GEE dataset description must not be used. Finally, observation geometry and meteorological data are not present in the GEE OLCI dataset, but they are crucial for most applications. Therefore, we propose to calculate angles and extraterrestrial solar fluxes and to use an alternative data source—the Copernicus Atmosphere Monitoring Service (CAMS) dataset—for meteodata.


Sign in / Sign up

Export Citation Format

Share Document