Quartz tuning fork, a low-cost orthogonal measurement tool for the characterization of low-volume liquid reagents

Measurement ◽  
2020 ◽  
Vol 152 ◽  
pp. 107313
Author(s):  
Abdullah Alodhayb
Nanoscale ◽  
2012 ◽  
Vol 4 (20) ◽  
pp. 6493 ◽  
Author(s):  
Sangmin An ◽  
Corey Stambaugh ◽  
Gunn Kim ◽  
Manhee Lee ◽  
Yonghee Kim ◽  
...  

2015 ◽  
Vol 223 ◽  
pp. 167-173 ◽  
Author(s):  
Bakir Babic ◽  
Magnus T.L. Hsu ◽  
Malcolm B. Gray ◽  
Mingzhen Lu ◽  
Jan Herrmann

Sensor Review ◽  
2003 ◽  
Vol 23 (2) ◽  
pp. 134-142 ◽  
Author(s):  
He Jin ◽  
Chen Zhaoyang ◽  
Lin Jiang ◽  
Dai Jingmin

2011 ◽  
Vol 483 ◽  
pp. 143-147
Author(s):  
Jing Ma ◽  
Jun Xu ◽  
Bo You

In this paper, a low cost quartz tuning fork temperature sensor adopting H-shaped tuning fork resonator to address miniaturization, high resolution and high stability has been designed, developed and tested. The quartz tuning temperature sensor is designed vibrating in flexural mode with a new thermo-sensitive cut. The quartz tuning fork temperature sensor consists of two prongs connected at one end of crystalline quartz plate with thin-film metal electrodes deposited on the faces, which is used to produce vibration in response to alternating voltages and detecting the resonance frequency in the meantime. When an external temperature is change, there is a shift in its natural frequency. Based on this principle, a resonant thermometer is designed. Finite element method is used to analyze the vibratory modes and optimize the structure. The whole structure is 500μm thickness, the length of tuning fork arm is 3076μm and the width of tuning fork arm is 600um, the frequency of tuning fork is about 37kHz with a sensitivity of rough 85 ppm/°C. The experimental results shown that a temperature accuracy of 0.01 °C and a resolution of 0.005 °C within temperature range from 0 °C to 100 °C. All these research are helpful to design satisfactory performance of the sensor for temperature measurement.


2010 ◽  
Vol 81 (6) ◽  
pp. 063706 ◽  
Author(s):  
Terunobu Akiyama ◽  
Nicolaas F. de Rooij ◽  
Urs Staufer ◽  
Manfred Detterbeck ◽  
Dominik Braendlin ◽  
...  

2014 ◽  
Vol 530-531 ◽  
pp. 79-82
Author(s):  
Chang Fu Li ◽  
Jing Ma ◽  
Fang He

This paper presents the design, fabrication and characterization of quartz tuning fork temperature sensor which is based on new ZY-cut-quartz crystal bulk acoustic wave resonator vibrating in a flexural mode. Design and performance analysis of the quartz tuning fork temperature sensor has been conducted and the thermal sensing characteristics were examined by measuring the resonance frequency shift of this sensor cause by an external temperature. The sensor prototype was successfully fabricated and calibrated from operating from 0°C to 100°C with sensitivity of 70ppm/°C. Experimental results show the sensor has high thermal sensitivity, good stability and well reproducibility. This work represents high precision and low power temperature sensor using the comprehensive thermal characterization of ZY-cut-quartz tuning fork resonator.


Author(s):  
Derya Demir ◽  
Sude Gundogdu ◽  
Seyda Kilic ◽  
Tugce Kartallioglu ◽  
Yusuf Alkan ◽  
...  

Quartz tuning fork (QTF) is a measurement tool that is gaining attraction nowadays due to remarkable features like their low cost, stable resonance frequency, and considerably low working frequency. However how to functionalize a QTF as a chemical or a physical sensor is still an important problem that needs to be solved for a widespread usage. This paper describes approaches to functionalize QTFs by utilizing melanin nanoparticles (MNP) in order to create a recognition layer for the creation of a target specific mass sensitive biosensor. In order to achieve this aim, electroplating and dip coating methods are chosen for their relative ease of use and cheap operating costs for the purpose of being industry-friendly and reproducible as a product for field applications. Moreover a comparative study on chemical etching of QTFs was conducted with the goal of improving MNP attachment during dip coating process.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7035
Author(s):  
Nadyah Alanazi ◽  
Abdullah N. Alodhayb ◽  
Atheer Almutairi ◽  
Hanan Alshehri ◽  
Sarah AlYemni ◽  
...  

This study generally relates to nuclear sensors and specifically to detecting nuclear and electromagnetic radiation using an ultrasensitive quartz tuning fork (QTF) sensor. We aim to detect low doses of gamma radiation with fast response time using QTF. Three different types of QTFs (uncoated and gold coated) were used in this study in order to investigate their sensitivity to gamma radiations. Our results show that a thick gold coating on QTF can enhance the quality factor and increase the resonance frequency from 32.7 to 32.9 kHz as compared to uncoated QTF. The results also show that increasing the surface area of the gold coating on the QTF can significantly enhance the sensitivity of the QTF to radiation. We investigated the properties of gold-coated and uncoated QTFs before and after irradiation by scanning electron microscopy. We further investigated the optical properties of SiO2 wafers (quartz) by spectroscopic ellipsometry (SE). The SE studies revealed that even a small change in the microstructure of the material caused by gamma radiation would have an impact on mechanical properties of QTF, resulting in a shift in resonance frequency. Overall, the results of the experiments demonstrated the feasibility of using QTF sensors as an easy to use, low-cost, and sensitive radiation detector.


Proceedings ◽  
2017 ◽  
Vol 1 (8) ◽  
pp. 803
Author(s):  
Mehmet Altay Ünal ◽  
Dilek Çökeliler Serdaroğlu ◽  
İsmail Cengiz Koçum

Sign in / Sign up

Export Citation Format

Share Document