New explicit formulation for ultimate bearing capacity of shallow foundations on granular soil using M5’ model tree

Measurement ◽  
2020 ◽  
Vol 163 ◽  
pp. 108032
Author(s):  
Rouhollah Khorrami ◽  
Ali Derakhshani ◽  
Hossein Moayedi
2012 ◽  
Vol 43 (3) ◽  
pp. 215-230 ◽  
Author(s):  
Manish Kumar Goyal ◽  
C. S. P. Ojha

We investigate the performance of existing state-of-the-art rule induction and tree algorithms, namely Single Conjunctive Rule Learner, Decision Table, M5 Model Tree, Decision Stump and REPTree. Downscaling models are developed using these algorithms to obtain projections of mean monthly precipitation to lake-basin scale in an arid region in India. The effectiveness of these algorithms is evaluated through application to downscale the predictand for the Lake Pichola region in Rajasthan state in India, which is considered to be a climatically sensitive region. The predictor variables are extracted from (1) the National Centre for Environmental Prediction (NCEP) reanalysis dataset for the period 1948–2000 and (2) the simulations from the third-generation Canadian Coupled Global Climate Model (CGCM3) for emission scenarios A1B, A2, B1 and COMMIT for the period 2001–2100. M5 Model Tree algorithm was found to yield better performance among all other learning techniques explored in the present study. The precipitation is projected to increase in future for A2 and A1B scenarios, whereas it is least for B1 and COMMIT scenarios using predictors.


2017 ◽  
Vol 553 ◽  
pp. 356-373 ◽  
Author(s):  
Mohammad Rezaie-balf ◽  
Sujay Raghavendra Naganna ◽  
Alireza Ghaemi ◽  
Paresh Chandra Deka

Geosciences ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 392
Author(s):  
Maurizio Ziccarelli ◽  
Marco Rosone

The presence of minor details of the ground, including soil or rock masses, occurs more frequently than what is normally believed. Thin weak layers, shear bands, and slickensided surfaces can substantially affect the behaviour of foundations, as well as that of other geostructures. In fact, they can affect the failure mechanisms, the ultimate bearing capacity of footings, and the safety factor of the geotechnical system. In this research, numerically conducted through Finite Element Code Plaxis 2D, the influence of a horizontal thin weak layer on the mechanical behaviour of shallow footings was evaluated. The obtained results prove that the weak layer strongly influences both the failure mechanism and the ultimate bearing capacity if its depth is lower than two to four times the footing width. In fact, under these circumstances, the failure mechanisms are always mixtilinear in shape because the shear strains largely develop on the weak layer. However, the reduction in the ultimate bearing capacity is a function of the difference between the shear strength of the foundation soil and the layer. The presence of a thin weak layer decreases the ultimate bearing capacity up to 90%. In conclusion, this research suggests that particular attention must be paid during detailed ground investigations to find thin weak layers. Based on the obtained results, it is convenient to increase the soil volume investigation to a depth equal to four times the width of the foundation.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Qing Yan ◽  
Junhai Zhao ◽  
Changguang Zhang ◽  
Jintai Wang

The reasonable determination of ultimate bearing capacity is crucial to an optimal design of shallow foundations. Soils surrounding shallow foundations are commonly located above the water table and are thus in an unsaturated state. The intermediate principal stress has an improving effect on the unsaturated soil strength. In this study, the ultimate bearing capacity formulation of strip foundations in unsaturated soils is presented by using Terzaghi’s theory. The unified shear strength equation of unsaturated soils under a plane strain condition is utilized to capture the intermediate principal stress effect. Furthermore, two profiles of matric suction are considered and a hyperbolic function of the friction angle related to matric suction (φb) is adopted to describe strength nonlinearity. The validity of this study is demonstrated by comparing it with model tests and a theoretical solution reported in the literature. Finally, parameter studies are conducted to investigate the effects of intermediate principal stress, matric suction, and base roughness on the ultimate bearing capacity of strip foundations. Besides, the effect of strength nonlinearity is discussed with two methods representing the angle φb.


1993 ◽  
Vol 30 (3) ◽  
pp. 545-549 ◽  
Author(s):  
M.T. Omar ◽  
B.M. Das ◽  
V.K. Puri ◽  
S.C. Yen

Laboratory model test results for the ultimate bearing capacity of strip and square foundations supported by sand reinforced with geogrid layers have been presented. Based on the model test results, the critical depth of reinforcement and the dimensions of the geogrid layers for mobilizing the maximum bearing-capacity ratio have been determined and compared. Key words : bearing capacity, geogrid, model test, reinforced sand, shallow foundation.


Sign in / Sign up

Export Citation Format

Share Document