Fault feature extraction and diagnosis of rolling bearings based on wavelet thresholding denoising with CEEMDAN energy entropy and PSO-LSSVM

Measurement ◽  
2021 ◽  
Vol 172 ◽  
pp. 108901
Author(s):  
Wuge Chen ◽  
Junning Li ◽  
Qian Wang ◽  
Ka Han
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Long Zhang ◽  
Binghuan Cai ◽  
Guoliang Xiong ◽  
Jianmin Zhou ◽  
Wenbin Tu ◽  
...  

Fault diagnosis of rolling bearings is not a trivial task because fault-induced periodic transient impulses are always submerged in environmental noise as well as large accidental impulses and attenuated by transmission path. In most hybrid diagnostic methods available for rolling bearings, the problems lie in twofolds. First, most optimization indices used in the individual signal processing stage do not take the periodical characteristic of fault transient impulses into consideration. Second, the individual stages make use of different optimization indices resulting in inconsistent optimization directions and possibly an unsatisfied diagnosis. To solve these problems, a multistage fault feature extraction method of consistent optimization for rolling bearings based on correlated kurtosis (CK) is proposed where maximum correlated kurtosis deconvolution (MCKD) is employed to attenuate the influence of transmission path followed by tunable Q factor wavelet transform (TQWT) to further enhance fault features by decomposing the preprocessed signals into multiple subbands under different Q values. The major contribution of the proposed approach is to consistently use CK as an optimization index of both MCKD and TQWT. The subband signal with the maximum CK which is an index being able to measure the periodical transient impulses in vibration signal yields an envelope spectrum, from which fault diagnosis is implemented. Simulated and experimental signals verified the effectiveness and advantages of the proposed method.


Sensors ◽  
2016 ◽  
Vol 16 (9) ◽  
pp. 1482 ◽  
Author(s):  
Xianglong Chen ◽  
Fuzhou Feng ◽  
Bingzhi Zhang

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Jun Ma ◽  
Jiande Wu ◽  
Yugang Fan ◽  
Xiaodong Wang

Since the working process of rolling bearings is a complex and nonstationary dynamic process, the common time and frequency characteristics of vibration signals are submerged in the noise. Thus, it is the key of fault diagnosis to extract the fault feature from vibration signal. Therefore, a fault feature extraction method for the rolling bearing based on the local mean decomposition (LMD) and envelope demodulation is proposed. Firstly, decompose the original vibration signal by LMD to get a series of production functions (PFs). Then dispose the envelope demodulation analysis on PF component. Finally, perform Fourier Transform on the demodulation signals and judge failure condition according to the dominant frequency of the spectrum. The results show that the proposed method can correctly extract the fault characteristics to diagnose faults.


Sign in / Sign up

Export Citation Format

Share Document