Investigating the impact of weather parameters selection on the prediction of solar radiation under different genera of cloud cover: A case-study in a subtropical location

Measurement ◽  
2021 ◽  
Vol 176 ◽  
pp. 109159
Author(s):  
Jamel Chakchak ◽  
Numan Sabit Cetin
2019 ◽  
Vol 43 (1) ◽  
pp. 80-94 ◽  
Author(s):  
Yao Feng ◽  
Dongmei Chen ◽  
Xinyi Zhao

Precise knowledge of direct and diffuse solar radiation is important for energy utilization and agricultural activities. However, field measurements in most areas of the world are only for total solar radiation. The satellite-retrieved direct and diffuse solar radiation show poor performance under overcast skies. Therefore, better empirical models are needed to estimate direct and diffuse solar radiation by considering the impact of aerosols over polluted regions. A case study is conducted in North China with the ground-measured solar radiation and satellite-retrieved aerosol optical depth to improve new empirical models at monthly (from 2000 to 2016) and daily (from 2006 to 2009) level. The improved empirical models are validated using the field measurements and compared with the existing models. Results suggest that these models perform well in estimating direct solar radiation at monthly ( R2 = 0.86–0.91, RMSE = 0.76–0.83 MJ/m2) and daily ( R2 = 0.91–0.94, RMSE = 1.51–1.64 MJ/m2) level. The accuracy of estimated monthly ( R2 = 0.95–0.96, RMSE = 0.57–0.65 MJ/m2) and daily ( R2 = 0.91–0.93, RMSE = 1.09–1.15 MJ/m2) diffuse solar radiation, particularly the maximum diffuse solar radiation value, has been improved compared to the existing models. The models presented in this study can be useful in the improvement and evaluation of solar radiation dataset over polluted regions similar to North China.


After shading a light on the extraterrestrial solar radiation in the chapter 3 it is important to evaluate the global terrestrial solar radiation and its components. The information on terrestrial solar radiation is required in several different forms depending on the kinds of calculations and kind of application that are to be done. Of course, terrestrial solar radiation on the horizontal plane depends on the different weather conditions such as cloud cover, relative humidity, and ambient temperature. Therefore, the impact of the atmosphere on solar radiation should be considered. One of the most important points of terrestrial solar radiation evaluation is its determination during clear sky conditions. Therefore, in this chapter, the equations that determine the air mass basing on available theories are given and the clear sky conditions are introduced with shading a light on the previous work in identifying clear sky conditions. Taking into consideration that, clear sky solar radiation estimation is of great importance for solar tracking, a detailed review of main available models is given in this chapter. As daily, monthly, seasonally, biannually and yearly mean daily solar radiations are required information for designing and installing long term tracking systems, different available methods are commented regarding their applicability for the estimation of solar radiation information in the desired format from the data that are available. An important accent is paid also on the assessment and comparison of monthly mean daily solar radiation estimation models.


2013 ◽  
Vol 52 (4I) ◽  
pp. 467-478 ◽  
Author(s):  
Rafat Mahmood ◽  
Sundus Saleemi ◽  
Sajid Amin

Out of the climatic variables such as temperature, humidity, precipitation, cloud cover, etc., electricity demand has been found most responsive to changes in temperature [Parkpoom and Harrison (2008); Al-Hamadi and Soliman (2005); Hor, et al. (2005)]. According to National Aeronautics and Space Administration, the decade from 2001 to 2010 was the warmest worldwide while the rise in surface temperatures of South Asia region by the end of the century is projected around 3.3oC average annually (IPCC);1 not only are the average temperatures rising but the range of extreme temperatures is also widening. Increase in temperatures can affect human lives significantly; the present study focusses on examining the impact of climate change on demand for electricity in Pakistan.


2018 ◽  
Vol 10 (4) ◽  
pp. 81
Author(s):  
H. I. Abdussamatov

It is believed that an increase in the area of the cloud cover in the lower atmosphere of the Earth caused by the influence grows of galactic cosmic rays in the period of the Grand minimum of solar activity lead to an increase the reflected part of incoming solar radiation back into space and by that to a cooling of the climate down to the Little Ice Age. We will try to estimate an inverse aspect of simultaneously influence of increase in the area of the cloud cover in to the narrowing of the transmission of the windows of atmospheric transparency, which practically compensates of this cooling by means of accumulation of energy. An increase in the reflection of the thermal radiation of the Earth surface and of the solar radiation reflected from it, as well as the significant amplification of the greenhouse effect, presents an important additional source of heating due to the increase in the area of the cloud cover in the lower atmosphere. The impact of the increase in the area of the cloud cover caused by the influence grows of cosmic rays on the climate is very small.


2021 ◽  
Vol 9 ◽  
Author(s):  
Makbul A. M. Ramli ◽  
Houssem R. E. H. Bouchekara ◽  
Mohammad S. Shahriar ◽  
Ahmad H. Milyani ◽  
Muhyaddin Rawa

A key factor in the performance of PV panels is the tilt angle, adjustable via various tracking systems. Fixed tilt angle PV panels miss out on most of the solar radiation each day whereas continuous tracking systems are not always cost-efficient, rather impractical in some cases. Therefore, adjusting the tilt angle using a limited number of periods per year can be a good, compromised solution. In this paper, a new approach is proposed to maximize the impact of solar radiation on PV panels by adjusting their tilt angles. Based on a limited number of periods or intervals per year, the optimal duration (number of days) of each period or interval along with the optimum tilt angle corresponding to each interval are determined by solving two interlinked optimization problems. These two problems are solved using the Most Valuable Player Algorithm (MVPA) combined with the Particle Swarm Optimization (PSO) algorithm. The case study for Yanbu, a western coastal city of Saudi Arabia has been investigated. The obtained results show that the enhanced solar power generation can be achieved by using optimal intervals and optimum tilt angle and provide a suitable benchmark for similar techniques to be used in the future to solve the problem of tilt angle adjustment for maximizing PV panels output.


2020 ◽  
Vol 3 (3) ◽  
Author(s):  
H. I. Abdussamatov

The energy of solar radiation absorbed by the Earth, as well as the thermal radiation of the Earth’s surface, which is released to the space through the atmospheric transparency window, depends on variations of the area of the cloud cover. Svensmark et al. suggest that the increase in the area of the cloud cover in the lower atmosphere, presumably caused by an increase in the flux of galactic cosmic rays during the quasi-bicentennial minimum of solar activity, results only in an increase in the fraction of the solar radiation reflected back to the space and weakens the flux of the solar radiation that reached the Earth surface. It is suggested, without any corresponding calculations of the variations of the average annual energy balance of the Earth Е, that the consequences will include only a deficit of the solar energy absorbed by the Earth and a cooling of the climate up to the onset of the Little Ice Age. These suggestions ignore simultaneous impact of the opposite aspects of the increase in the area of the cloud cover on the climate warming. The latter will result from a decrease in the power of thermal radiation of the Earth’s surface released to the space, and also in the power of the solar radiation reflected from the Earth’s surface, due to the increase in their absorption and reflection back to the surface. A substantial strengthening in the greenhouse effect and the narrowing of the atmospheric transparency window will also occur. Here, we estimate the impact of all aspects of possible long-term 2% growth of the cloud cover area in the lower atmosphere by Е. We found that an increase in the cloud cover area in the lower atmosphere will result simultaneously both in the decrease and in the increase in the temperature, which will virtually compensate each other, while the energy balance of the Earth E before and after the increase in the cloud cover area by 2% will stay essentially the same: E1 – Eо ≈ 0. 


Sign in / Sign up

Export Citation Format

Share Document