Absence of the Impact of the Flux of Cosmic Rays and the Cloud Cover on the Energy Balance of the Earth

2020 ◽  
Vol 3 (3) ◽  
Author(s):  
H. I. Abdussamatov

The energy of solar radiation absorbed by the Earth, as well as the thermal radiation of the Earth’s surface, which is released to the space through the atmospheric transparency window, depends on variations of the area of the cloud cover. Svensmark et al. suggest that the increase in the area of the cloud cover in the lower atmosphere, presumably caused by an increase in the flux of galactic cosmic rays during the quasi-bicentennial minimum of solar activity, results only in an increase in the fraction of the solar radiation reflected back to the space and weakens the flux of the solar radiation that reached the Earth surface. It is suggested, without any corresponding calculations of the variations of the average annual energy balance of the Earth Е, that the consequences will include only a deficit of the solar energy absorbed by the Earth and a cooling of the climate up to the onset of the Little Ice Age. These suggestions ignore simultaneous impact of the opposite aspects of the increase in the area of the cloud cover on the climate warming. The latter will result from a decrease in the power of thermal radiation of the Earth’s surface released to the space, and also in the power of the solar radiation reflected from the Earth’s surface, due to the increase in their absorption and reflection back to the surface. A substantial strengthening in the greenhouse effect and the narrowing of the atmospheric transparency window will also occur. Here, we estimate the impact of all aspects of possible long-term 2% growth of the cloud cover area in the lower atmosphere by Е. We found that an increase in the cloud cover area in the lower atmosphere will result simultaneously both in the decrease and in the increase in the temperature, which will virtually compensate each other, while the energy balance of the Earth E before and after the increase in the cloud cover area by 2% will stay essentially the same: E1 – Eо ≈ 0. 

2018 ◽  
Vol 10 (4) ◽  
pp. 81
Author(s):  
H. I. Abdussamatov

It is believed that an increase in the area of the cloud cover in the lower atmosphere of the Earth caused by the influence grows of galactic cosmic rays in the period of the Grand minimum of solar activity lead to an increase the reflected part of incoming solar radiation back into space and by that to a cooling of the climate down to the Little Ice Age. We will try to estimate an inverse aspect of simultaneously influence of increase in the area of the cloud cover in to the narrowing of the transmission of the windows of atmospheric transparency, which practically compensates of this cooling by means of accumulation of energy. An increase in the reflection of the thermal radiation of the Earth surface and of the solar radiation reflected from it, as well as the significant amplification of the greenhouse effect, presents an important additional source of heating due to the increase in the area of the cloud cover in the lower atmosphere. The impact of the increase in the area of the cloud cover caused by the influence grows of cosmic rays on the climate is very small.


1958 ◽  
Vol 6 ◽  
pp. 404-419 ◽  
Author(s):  
A. Ehmert

The increase of cosmic radiation on 23 February 1956 by solar radiation exhibited in the first minutes a high peak at European stations that were lying in direct impact zones for particles coming from a narrow angle near the sun, whilst other stations received no radiation for a further time of 10 minutes and more. An hour later all stations in intermediate and high latitudes recorded solar radiation in a distribution as would be expected if this radiation fell into the geomagnetic field in a fairly isotropic distribution. The intensity of the solar component decreased at this time at all stations according to the same hyperbolic law (~t–2).It is shown, that this decreasing law, as well as the increase of the impact zones on the earth, can be understood as the consequence of an interstellar magnetic field in which the particles were running and bent after their ejection from the sun.Considering the bending in the earth's magnetic field, one can estimate the direction of this field from the times of the very beginning of the increase in Japan and at high latitudes. The lines of magnetic force come to the earth from a point with astronomical co-ordinates near 12·00, 30° N. This implies that within the low accuracy they have the direction of the galactic spiral arm in which we live. The field strength comes out to be about 0·7 × 10–6gauss. There is a close agreement with the field, that Fermi and Chandrasekhar have derived from Hiltner's measurements of the polarization of starlight and the strength of which they had estimated to the same order of magnitude.


After shading a light on the extraterrestrial solar radiation in the chapter 3 it is important to evaluate the global terrestrial solar radiation and its components. The information on terrestrial solar radiation is required in several different forms depending on the kinds of calculations and kind of application that are to be done. Of course, terrestrial solar radiation on the horizontal plane depends on the different weather conditions such as cloud cover, relative humidity, and ambient temperature. Therefore, the impact of the atmosphere on solar radiation should be considered. One of the most important points of terrestrial solar radiation evaluation is its determination during clear sky conditions. Therefore, in this chapter, the equations that determine the air mass basing on available theories are given and the clear sky conditions are introduced with shading a light on the previous work in identifying clear sky conditions. Taking into consideration that, clear sky solar radiation estimation is of great importance for solar tracking, a detailed review of main available models is given in this chapter. As daily, monthly, seasonally, biannually and yearly mean daily solar radiations are required information for designing and installing long term tracking systems, different available methods are commented regarding their applicability for the estimation of solar radiation information in the desired format from the data that are available. An important accent is paid also on the assessment and comparison of monthly mean daily solar radiation estimation models.


2014 ◽  
Vol 60 (219) ◽  
pp. 183-191 ◽  
Author(s):  
Jakob Abermann ◽  
Christophe Kinnard ◽  
Shelley MacDonell

AbstractAlbedo variations are presented at two on-glacier sites in the semi-arid Andes, Chile, with >3 years of continuous measurements. Although <2 km apart and at similar elevations, the sites show significantly different albedo cycles. Whereas Toro 1 exhibits a clear seasonal cycle, Guanaco reveals a more complicated pattern, as exposed ice can occur in any month of the year. Daily albedo values are as low as 0.18 for debris-covered Toro 1, while minima are higher on Guanaco (0.38). A method is presented to discern cloud-free from cloudy conditions using measured incoming shortwave radiation only. A cloud climatology is provided showing very low cloudiness values. We see that effective cloud cover relates inversely to cloud occurrence (i.e. either more but thin or fewer but thick clouds). The cloud-free diurnal albedo cycle is pronounced, with lowest values around noon. Clouds increase albedo by 0.04 as a median hourly value, and 0.20 for the 95% quantile. There is a positive relationship between effective cloud cover and resulting albedo rise. Calculations as to whether the diurnal albedo cycle or the effect of clouds on albedo should be considered in energy-balance estimations show that the former is necessary whereas the latter can be neglected in the semi-arid Andes.


2021 ◽  
Vol 22 (2) ◽  
pp. 139-147
Author(s):  
Peter E. Rozin ◽  
Yuri A. Smolyaninov

The article is devoted to the actual task of planning the work of a group of different types of spacecraft for remote sensing of the Earth. An enlarged algorithm for solving the planning problem for different types of spacecraft is described. The result of the enlarged algorithm is sought in the form of a set of reference plans for groups of similar spacecraft, thinned out by removing some of the conflicting operations of resetting the sensing data. The characteristics of the developed plans largely depend on the methodology used to account for the impact of cloud cover. The possibility of implementing a methodology based on the use of files of current weather forecasts of hydrometeorological centers downloaded from the Internet in the form of a special application is investigated. The created application is being tested on the real data of the hydrometeorological center downloaded from the American server, which covers a large region, including the European part of Eurasia and part of Africa. An application that simulates the distribution of points within a region estimates the number of points covered by weak cloud cover (20% or less). Based on the results of the simulation, it was found that the proportion of points available for shooting lies in the range from about a quarter to a third. Based on the obtained quantitative estimates, it is concluded that taking into account the influence of cloud cover radically changes the reference plans calculated taking into account only illumination, and affects the structure of the enlarged planning algorithm.


2019 ◽  
Author(s):  
Ramdane Alkama ◽  
Alessandro Cescatti ◽  
Patrick C. Taylor ◽  
Lorea Garcia-San Martin ◽  
Herve Douville ◽  
...  

Abstract. Clouds plays an important role on the climate system through two main contrasting effects: (1) cooling the Earth by reflecting to space part of incoming solar radiation; (2) warming the surface by reducing the Earth’s loss of thermal energy to space. Recently, scientists have paid more attention to the warming role of clouds because of the acceleration of Arctic sea ice melting and because of recent studies that did not find any response of cloud cover fraction to reduced sea ice in summer. On the contrary, with this work based on satellite CERES data and 32 CMIP5 climate models, we reveal that the cooling role of clouds is dominant. Indeed, cloud dynamic occurring in combination with sea-ice melting plays an important cooling effect by altering the surface energy budget in an apparently contradicting way: years with less sea ice are also those that show an increase of the radiative energy reflected back to space by clouds. An increase in absorbed solar radiation when sea ice retreats (surface albedo change) explains 66 ± 2 % of the observed signal. The remaining 34 ± 1 % are due to the increase in cloud cover/thickness when sea ice retreat and associated reflection to space. This interplay between clouds and sea ice reduces by half the increase of net radiation at the surface that follows the sea-ice retreat, therefore damping the impact of polar sea ice loss. We further highlight how this process is mis-represented in some climate models.


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


Sign in / Sign up

Export Citation Format

Share Document