Chatter detection in camshaft high-speed grinding process based on VMD parametric optimization

Measurement ◽  
2021 ◽  
pp. 110133
Author(s):  
Tao Liu ◽  
Zhaohui Deng ◽  
Chengyao Luo ◽  
Zhongyang Li ◽  
Lishu Lv ◽  
...  
2002 ◽  
Vol 2002.51 (0) ◽  
pp. 343-344
Author(s):  
Takafumi NAKAHARA ◽  
Toshio YOSIKAWA ◽  
Shinya MATSUOKA

2008 ◽  
Vol 53-54 ◽  
pp. 209-214 ◽  
Author(s):  
Shi Chao Xiu ◽  
Ya Dong Gong ◽  
Guang Qi Cai

In high and super-high speed grinding process, there is an airflow layer with high speed around the circle edge of the grinding wheel that hinders the grinding fluid into contact layer, namely, the air barrier effect. The speed of airflow layer is directly proportional to the square of the wheel speed. Quick-point grinding is a new type of high and super-high speed grinding process with a point contact zone and less grinding power. The edge effect of the air barrier is weakened because the thin CBN wheel is applied in the process. By the analysis of dynamic pressure and velocity distributions in the airflow layer around the wheel edge, the mathematic models of the flow and jet pressure of grinding fluid for effective supply in the process were established and the process of optimization calculation of the jet nozzle diameter for green manufacturing was also analyzed based on the thermodynamics and the technical character of quick-point grinding process. The quick-point grinding experiment for surface integrity influenced by grinding fluid supply parameters was performed.


2006 ◽  
Vol 113 ◽  
pp. 367-370
Author(s):  
Vladas Vekteris

Lubrication and cooling of a high speed grinding process in the grinding machine as in a mechatronic system using technological liquids are analyzed in this paper. It is shown that in the case of high grinding speed, technological liquids undergo an aeration process and due to this their physical properties change. Reynolds equation, which estimates the aeration liquid, is derived. It is shown, that the application of such an equation is proper only in the finishing of grinding. Experimental research is also presented in the paper, which shows the influence of technological liquids to the temperature field of the grinding machine and to its automatic control.


2014 ◽  
Vol 575 ◽  
pp. 350-354
Author(s):  
Zhen Tao Shang ◽  
Ying Jia

According to broken edges and cracks emerging in traditionally machining cemented carbides (CP1) materials, this paper carried out some experimental researches on high and ultra-high grinding process for these materials, and considered the effect of process parameters on grinding forces, surface roughness, surface quality; discusses the calculation of the single grinding average normals force and relationship with maximum undeformed chip thickness and theoretical critical normal loads; probes the removal mechanisms of cemented carbide in high/ultra-high grinding process.


2009 ◽  
Vol 9 (1) ◽  
Author(s):  
Imrich Lukovics ◽  
Ondřej Bílek

2021 ◽  
Author(s):  
Zhou Chang ◽  
Qian Jia ◽  
Lai Hu

Abstract In order to meet the requirement of grade P2 bearing grinding, we designed a high-speed internal grinding machine used for bearing raceway and inner circle grinding. The machine adopts T-type layout and 4-axis NC linkage. It is supported by hydrostatic pressure and driven directly by torque motor. Besides, it is equipped with high-speed hydrostatic grinding wheel spindle of ELKA. Our design includes hydrostatic workpiece shaft, hydrostatic turntable and hydrostatic guide rail. The design of this machine can ensure the high-speed grinding process and research has good engineering application value. Finally, the designed precision grinding machine is used to grind the P2 bearing raceway with reasonable processing technology.


2008 ◽  
Vol 375-376 ◽  
pp. 614-618 ◽  
Author(s):  
Shi Chao Xiu ◽  
Jian Liu ◽  
Chang He Li ◽  
Guang Qi Cai

The balance precision of grinding wheel is a key technical parameter in ultra-high speed grinding process. The actual standard for the balance precision of rigid rotor is not fit for the thin ultra-high speed grinding system well. The unbalance factors affected on the ultra-high speed grinding wheel and its system were analyzed, and its effects on the machining quality in the process were also discussed. The theory and select principle of the balance precision for ultra-high speed grinding wheel system were studied. The test of dynamic performance was performed for the thin ultra-high speed CBN grinding wheel system whose structure was optimized. The groundwork to establish the standard of balance precision for thin ultra-high speed grinding system was offered.


RSC Advances ◽  
2017 ◽  
Vol 7 (67) ◽  
pp. 42047-42055 ◽  
Author(s):  
QiHong Fang ◽  
Qiong Wang ◽  
Jia Li ◽  
Xin Zeng ◽  
YouWen Liu

Molecular dynamics simulation of Ni/Cu multilayers under grinding process with a diamond tip is performed, with the aim of investigating the subsurface damage and material removal in Ni/Cu multilayers.


2009 ◽  
Vol 76-78 ◽  
pp. 43-48
Author(s):  
Y.G. Zheng ◽  
W.G. Liu ◽  
Bin Jiang ◽  
Hang Gao ◽  
S.G. Zheng

According to the demand for internal grinding machine in precise machining of air-conditioner compressor piston hole, a kind of high precise CNC internal grinding machine with CBN wheel is developed by adopting self-adaptive control for grinding process. Meanwhile, grinding precision and stability are achieved by overcoming many problems emerging from high-speed grinding process with CBN wheel. More than 100000 times’ grinding experimental results show that the whole performance of grinding machine developed is the same as that of the same kind of international machine. In order to study grinding mechanism with CBN wheels and then improve machine’s capability, grinding data in several machining cycles is analyzed.


2010 ◽  
Vol 135 ◽  
pp. 452-457
Author(s):  
Shi Chao Xiu ◽  
Ji Man Luo ◽  
Zhi Li Sun

Super-high speed point grinding is a new high-speed grinding technology with some excellent machining performances. In such a grinding process, there is a high-speed airflow rotating around the edge of grinding wheel which hinders the grinding fluid from injecting into the contact area and makes the fluid atomization and splash during grinding process, so as to decrease the ratio of effective grinding fluid into contact area and affect the surface integrity of workpiece. In this paper, the structure and properties of grinding fluid jet is analyzed, the velocity distribution field of the round turbulent jet is discussed theoretically and simulated. Based on the pressure balance principle, a mathematical model is established for the jet velocity at the fluid nozzle, which enables the grinding fluid to pass through the high speed airflow and enter into the contact area. According to the analysis of the grinding fluid velocity in the jet core, an engineering formula is given to calculate the position limit of nozzle during grinding process, as well as a practical design example for the high speed grinding machine is presented.


Sign in / Sign up

Export Citation Format

Share Document