scholarly journals Elimination of aromatic fusel alcohols as by-products of Saccharomyces cerevisiae strains engineered for phenylpropanoid production by 2-oxo-acid decarboxylase replacement

Author(s):  
Else-Jasmijn Hassing ◽  
Joran Buijs ◽  
Nikki Blankerts ◽  
Marijke A. Luttik ◽  
Erik A.de Hulster ◽  
...  
2005 ◽  
Vol 71 (6) ◽  
pp. 3276-3284 ◽  
Author(s):  
Zeynep Vuralhan ◽  
Marijke A. H. Luttik ◽  
Siew Leng Tai ◽  
Viktor M. Boer ◽  
Marcos A. Morais ◽  
...  

ABSTRACT Aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae CEN.PK113-7D were grown with different nitrogen sources. Cultures grown with phenylalanine, leucine, or methionine as a nitrogen source contained high levels of the corresponding fusel alcohols and organic acids, indicating activity of the Ehrlich pathway. Also, fusel alcohols derived from the other two amino acids were detected in the supernatant, suggesting the involvement of a common enzyme activity. Transcript level analysis revealed that among the five thiamine-pyrophospate-dependent decarboxylases (PDC1, PDC5, PDC6, ARO10, and THI3), only ARO10 was transcriptionally up-regulated when phenylalanine, leucine, or methionine was used as a nitrogen source compared to growth on ammonia, proline, and asparagine. Moreover, 2-oxo acid decarboxylase activity measured in cell extract from CEN.PK113-7D grown with phenylalanine, methionine, or leucine displayed similar broad-substrate 2-oxo acid decarboxylase activity. Constitutive expression of ARO10 in ethanol-limited chemostat cultures in a strain lacking the five thiamine-pyrophosphate-dependent decarboxylases, grown with ammonia as a nitrogen source, led to a measurable decarboxylase activity with phenylalanine-, leucine-, and methionine-derived 2-oxo acids. Moreover, even with ammonia as the nitrogen source, these cultures produced significant amounts of the corresponding fusel alcohols. Nonetheless, the constitutive expression of ARO10 in an isogenic wild-type strain grown in a glucose-limited chemostat with ammonia did not lead to any 2-oxo acid decarboxylase activity. Furthermore, even when ARO10 was constitutively expressed, growth with phenylalanine as the nitrogen source led to increased decarboxylase activities in cell extracts. The results reported here indicate the involvement of posttranscriptional regulation and/or a second protein in the ARO10-dependent, broad-substrate-specificity decarboxylase activity.


2016 ◽  
Vol 24 (7) ◽  
pp. 6096-6105 ◽  
Author(s):  
Lyliane F. Trigueiro ◽  
Larissa M. Silva ◽  
Luciana A. B. D. Itto ◽  
Thiago M. B. F. Oliveira ◽  
Artur J. Motheo ◽  
...  

2021 ◽  
Vol 7 (11) ◽  
pp. 914
Author(s):  
Dorthe Rippert ◽  
Federica Linguardo ◽  
Andreea Perpelea ◽  
Mathias Klein ◽  
Elke Nevoigt

d-galacturonic acid (d-GalUA) is the main constituent of pectin, a complex polysaccharide abundant in several agro-industrial by-products such as sugar beet pulp or citrus peel. During several attempts to valorise d-GalUA by engineering the popular cell factory Saccharomyces cerevisiae, it became obvious that d-GalUA is, to a certain degree, converted to l-galactonate (l-GalA) by an endogenous enzymatic activity. The goal of the current work was to clarify the identity of the responsible enzyme(s). A protein homology search identified three NADPH-dependent unspecific aldo-keto reductases in baker’s yeast (encoded by GCY1, YPR1 and GRE3) that show sequence similarities to known d-GalUA reductases from filamentous fungi. Characterization of the respective deletion mutants and an in vitro enzyme assay with a Gcy1 overproducing strain verified that Gcy1 is mainly responsible for the detectable reduction of d-GalUA to l-GalA.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Emma Zsófia Aletta Nagy ◽  
Csaba Levente Nagy ◽  
Alina Filip ◽  
Katalin Nagy ◽  
Emese Gál ◽  
...  

1998 ◽  
Vol 64 (4) ◽  
pp. 1303-1307 ◽  
Author(s):  
Eelko G. ter Schure ◽  
Marcel T. Flikweert ◽  
Johannes P. van Dijken ◽  
Jack T. Pronk ◽  
C. Theo Verrips

ABSTRACT The fusel alcohols 3-methyl-1-butanol, 2-methyl-1-butanol, and 2-methyl-propanol are important flavor compounds in yeast-derived food products and beverages. The formation of these compounds from branched-chain amino acids is generally assumed to occur via the Ehrlich pathway, which involves the concerted action of a branched-chain transaminase, a decarboxylase, and an alcohol dehydrogenase. Partially purified preparations of pyruvate decarboxylase (EC 4.1.1.1 ) have been reported to catalyze the decarboxylation of the branched-chain 2-oxo acids formed upon transamination of leucine, isoleucine, and valine. Indeed, in a coupled enzymatic assay with horse liver alcohol dehydrogenase, cell extracts of a wild-type Saccharomyces cerevisiae strain exhibited significant decarboxylation rates with these branched-chain 2-oxo acids. Decarboxylation of branched-chain 2-oxo acids was not detectable in cell extracts of an isogenic strain in which all threePDC genes had been disrupted. Experiments with cell extracts from S. cerevisiae mutants expressing a singlePDC gene demonstrated that both PDC1- andPDC5-encoded isoenzymes can decarboxylate branched-chain 2-oxo acids. To investigate whether pyruvate decarboxylase is essential for fusel alcohol production by whole cells, wild-type S. cerevisiae and an isogenic pyruvate decarboxylase-negative strain were grown on ethanol with a mixture of leucine, isoleucine, and valine as the nitrogen source. Surprisingly, the three corresponding fusel alcohols were produced in both strains. This result proves that decarboxylation of branched-chain 2-oxo acids via pyruvate decarboxylase is not an essential step in fusel alcohol production.


Fermentation ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 10 ◽  
Author(s):  
Nkosikho Dlangamandla ◽  
Seteno Ntwampe ◽  
Justine Angadam ◽  
Boredi Chidi ◽  
Maxwell Mewa-Ngongang

In this study, microbial growth kinetics and modeling of alcohols production using Saccharomyces cerevisiae were evaluated using different hydrolysates in a single pot (batch) system. Mixed agro-waste hydrolysates from different pre-treatment methods, i.e., N. mirabilis/CP and HWP/DAP/CP, were used as the sole nutrient source in the fermentations used to produce the alcohols of interest. The maximum Saccharomyces cerevisiae concentration of 1.47 CFU/mL (×1010) was observed with HWP/DAP/CP hydrolysates, with a relative difference of 21.1% when compared to the N. mirabilis/CP cultures; the product yield based on biomass generation was relatively (20.2%) higher for the N. mirabilis/CP cultures. For the total residual phenolic compounds (TRPCs) generation, a relative difference (24.6%) between N. mirabilis/CP and HWP/DAP/CP pre-treatment systems was observed, suggesting that N. mirabilis/CP generates lower inhibition by-products. This was further evidenced by the lowest substrate utilization rate (3.3 × 10−4 g/(L·h)) for the N. mirabilis/CP cultures while achieving relatively similar product formation rates to those observed for the HWP/DAP/CP. A better correlation (R2 = 0.94) was obtained when predicting substrate utilization for the N. mirabilis/CP cultures. Generally, the pre-treatment of mixed agro-waste using N. mirabilis/CP seemed appropriate for producing hydrolysates which Saccharomyces cerevisiae can effectively use for alcohol production in the biorefinery industry.


2019 ◽  
Vol 125 (3) ◽  
pp. 326-332 ◽  
Author(s):  
C. Djameh ◽  
W.O. Ellis ◽  
I. Oduro ◽  
F.K. Saalia ◽  
K. Haslbeck ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
pp. 117-126
Author(s):  
Richmond Godwin Afful ◽  
Tracy Naa Adoley Addotey ◽  
Samaila Boye Ajeje

Ethanol fermentation is a biological procedure which converts sugars such as glucose, fructose, and sucrose into cellular energy, producing ethanol and carbon dioxide as by-products. Since yeasts perform this conversion in the absence of oxygen, alcoholic fermentation is generally considered to be an anaerobic process. Ethanol fermentation has many uses, including the production of alcoholic beverages, the production of ethanol fuel, and bread making. The increasing demand for biofuels around the globe has also prompted the necessity to seek other means to meet the demands. In this review, the general ideologies, methodologies, general chemistry and biochemistry and conditions of the production of ethanol by fermentation engineering using Saccharomyces cerevisiae are highlighted. The quest to reduce pressure on staple foods has necessitated the attention now given to the use of lignocellulose biomass, despite the complexity of the process. It concludes by suggesting ways to improve yield and commercialization of the use of lignocellulosic biomass for ethanol fermentation.


Sign in / Sign up

Export Citation Format

Share Document