scholarly journals External spur gear root bending stress: A comparison of ISO 6336:2006, AGMA 2101-D04, ANSYS finite element analysis and strain gauge techniques

2017 ◽  
Vol 111 ◽  
pp. 1-9 ◽  
Author(s):  
Timothy J. Lisle ◽  
Brian A. Shaw ◽  
Robert C. Frazer
Author(s):  
Timothy J Lisle ◽  
Brian A Shaw ◽  
Robert C Frazer

The Association of German Engineers VDI 2737:2005 and the International Organisation for Standardisation ISO 6336:2006 are universally accepted analytical procedures for the analysis of internal gears. There is no official American Gear Manufacturers Association standard for internal gear stress analysis due to the validity of inscribing the Lewis parabola within internal concave profiles and the resulting errors associated with the location of maximum root bending stress. This research investigates the differences associated with using ISO 6336, VDI 2737 and an unofficial American Gear Manufacturers Association method, all of which are compared against a potentially more accurate numerical (ANSYS) method and strain gauge techniques.


1994 ◽  
Vol 116 (4) ◽  
pp. 1157-1162 ◽  
Author(s):  
G. D. Bibel ◽  
S. K. Reddy ◽  
M. Savage ◽  
R. F. Handschuh

Thin rim gears find application in high-power, lightweight aircraft transmissions. Bending stresses in thin rim spur gear tooth fillets and root areas differ from the stresses in solid gears due to rim deformations. Rim thickness is a significant design parameter for these gears. To study this parameter, a finite element analysis was conducted on a segment of a thin rim gear. The rim thickness was varied and the location and magnitude of the maximum bending stresses reported. Design limits are discussed and compared with the results of other researchers.


Author(s):  
Zihni B Saribay

The conjugate meshing face-gear pairs are implemented to high shaft angle intersecting axis gears such as the pericyclic transmission system. The meshing face-gear pair tooth surfaces are generated with a mutually conjugate spur shaper. The established tooth geometry and the dimensions of the conjugate face-gear pairs are summarized in this article. Four different example face-gear pairs are generated at various shaft angles and numbers of tooth combinations. Tooth bending stresses of these face-gear pair teeth are investigated based on finite element analysis methods. In these analyses, only single pairs of teeth are investigated. These results are compared to analog the spur gear tooth bending stresses calculated by finite element analysis and standard spur gear stress formulas. Meshing face-gear pair single tooth bending stress levels show approximately 3% to 6% difference from same size spur gear tooth.


2013 ◽  
Vol 791-793 ◽  
pp. 718-721
Author(s):  
Man Man Xu ◽  
Yu Li ◽  
Sai Nan Xie ◽  
Qing Hua Chen

To analyse the road-header rack and pinion by using the finite element analysis software COSMOS/WORKS. Compared to the traditional analytic calculation and numerical analysis method, it is more intuitively get 28 ° pressure angle spur gear rack meshing stress and strain distribution, which can rack and pinion improvements designed to provide scientific reference.


2014 ◽  
Vol 962-965 ◽  
pp. 2957-2960
Author(s):  
Qian Peng Han ◽  
Bo Peng

This article summarized the general process of parametric modeling and finite element analysis of spur gear,PRO/E used to create parametric model,and Patran used to finite element analysis.Parametric modeling can reduce design period of the similar products,and modal analysis provide the basis for the selection and optimization of gear.


2020 ◽  
Vol 14 (5-6) ◽  
pp. 555-567
Author(s):  
Michael Weigelt ◽  
Cornelius Thoma ◽  
Erdong Zheng ◽  
Joerg Franke

AbstractNumerous applications of daily life use flat coils, e.g. in the automotive area, in solar technology and in modern kitchens. One common property that all these applications share, is a flat coil made of high-frequency (HF) litz wires. The coil layout and the properties of the HF litz wire influence the winding process and the efficiency of the application. As a result, the HF litz wire must meet the complex technical requirements of the winding process and of the preferred mechanical, electromagnetic and thermal properties of the HF litz wire itself. Therefore, a reasonable configuration and optimization of HF litz wire has been developed with the help of a finite-element-analysis (FEA). In this work, it is first shown that the mechanical behavior of HF litz wire under tensile and bending stress can be simulated. Since the computational effort for modelling an HF litz wire at the single conductor level is hardly manageable, a suitable modelling strategy is developed and applied using geometric analogous models (GAM). By using such a model, HF litz wires can be designed for the specific application and their behavior in a winding process can be predicted.


1982 ◽  
Vol 104 (4) ◽  
pp. 759-764 ◽  
Author(s):  
J. J. Coy ◽  
C. Hu-Chih Chao

A method of selecting grid size for the finite element analysis of gear tooth deflection is presented. The method is based on a finite element study of two cylinders in line contact, where the criterion for establishing element size was that there be agreement with the classic Hertzian solution for deflection. Many previous finite element studies of gear tooth deflection have not included the full effect of the Hertzian deflection. The present results are applied to calculate deflection for the gear specimen used in the NASA spur gear test rig. Comparisons are made between the present results and the results of two other methods of calculation. The results have application in design of gear tooth profile modifications to reduce noise and dynamic loads.


1978 ◽  
Vol 13 (3) ◽  
pp. 141-147 ◽  
Author(s):  
R Bell ◽  
P P Benham

Brittle-lacquer and strain-gauge methods and a finite-element analysis are used to determine stress distributions in a simplified model and an actual centrifugal fan impeller.


Sign in / Sign up

Export Citation Format

Share Document