Vibration characteristics of a high-speed flexible angular contact ball bearing with the manufacturing error

2021 ◽  
Vol 162 ◽  
pp. 104335
Author(s):  
Jing Liu ◽  
Lei Xue ◽  
Zidan Xu ◽  
Hao Wu ◽  
Guang Pan
Author(s):  
Yudong Bao ◽  
Linkai Wu ◽  
Yanling Zhao ◽  
Chengyi Pan

Background:: Angular contact ball bearings are the most popular bearing type used in the high speed spindle for machining centers, The performance of the bearing directly affects the machining efficiency of the machine tool, Obtaining a higher value is the direction of its research and development. Objective:: By analyzing the research achievements and patents of electric spindle angular contact bearings, summarizing the development trend provides a reference for the development of electric spindle bearings. Methods:: Through the analysis of the relevant technology of the electric spindle angular contact ball bearing, the advantages and disadvantages of the angular contact ball bearing are introduced, and the research results are combined with the patent analysis. Results:: With the rapid development of high-speed cutting and numerical control technology and the needs of practical applications, the spindle requires higher and higher speeds for bearings. In order to meet the requirements of use, it is necessary to improve the bearing performance by optimizing the structure size and improving the lubrication conditions. Meanwhile, reasonable processing and assembly methods will also have a beneficial effect on bearing performance. Conclusion:: With the continuous deepening of bearing technology research and the use of new structures and ceramic materials has made the bearing's limit speed repeatedly reach new highs. The future development trend of high-speed bearings for electric spindles is environmental protection, intelligence, high speed, high precision and long life.


2019 ◽  
Vol 12 (3) ◽  
pp. 248-261
Author(s):  
Baomin Wang ◽  
Xiao Chang

Background: Angular contact ball bearing is an important component of many high-speed rotating mechanical systems. Oil-air lubrication makes it possible for angular contact ball bearing to operate at high speed. So the lubrication state of angular contact ball bearing directly affects the performance of the mechanical systems. However, as bearing rotation speed increases, the temperature rise is still the dominant limiting factor for improving the performance and service life of angular contact ball bearings. Therefore, it is very necessary to predict the temperature rise of angular contact ball bearings lubricated with oil-air. Objective: The purpose of this study is to provide an overview of temperature calculation of bearing from many studies and patents, and propose a new prediction method for temperature rise of angular contact ball bearing. Methods: Based on the artificial neural network and genetic algorithm, a new prediction methodology for bearings temperature rise was proposed which capitalizes on the notion that the temperature rise of oil-air lubricated angular contact ball bearing is generally coupling. The influence factors of temperature rise in high-speed angular contact ball bearings were analyzed through grey relational analysis, and the key influence factors are determined. Combined with Genetic Algorithm (GA), the Artificial Neural Network (ANN) model based on these key influence factors was built up, two groups of experimental data were used to train and validate the ANN model. Results: Compared with the ANN model, the ANN-GA model has shorter training time, higher accuracy and better stability, the output of ANN-GA model shows a good agreement with the experimental data, above 92% of bearing temperature rise under varying conditions can be predicted using the ANNGA model. Conclusion: A new method was proposed to predict the temperature rise of oil-air lubricated angular contact ball bearings based on the artificial neural network and genetic algorithm. The results show that the prediction model has good accuracy, stability and robustness.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Guang Zeng ◽  
Chunjiang Zhao ◽  
Xiaokai Yu ◽  
Biao Sun ◽  
Zhigang Xiao ◽  
...  

For the calculation model of high-speed angular contact bearing has many variables, the large root difference exists, and the Newton iterative method solving the convergence depends on the initial value problems; thus, the simplified calculation model is proposed and the algorithm is improved. Firstly, based on the nonlinear equations of variables recurrence method of the high-speed angular contact ball bearing calculation model, it is proved that the ultimate fundamental variables of calculation model are the actual inner and outer contact angles, the axial and radial deformations. According to this reason, the nonlinear equations are deformed and deduced, and the number of equations is reduced from 4Z + 2 to 2Z + 2 (Z represents the number of rolling bodies); a simplified calculation model is formed. Secondly, according to the small dependence of the artificial bee colony algorithm on the initial value, an improved artificial bee colony algorithm is proposed for the large root difference characteristics of high-speed ball bearings. The validity of the improved algorithm is verified by standard test function. The algorithm is used to solve the high-speed angular contact ball bearing calculation model. Finally, the deformations of high-speed angular contact ball bearings are compared and verified by experiments, and the results of improved algorithm show good agreement with the experiments results.


2020 ◽  
Vol 72 (7) ◽  
pp. 845-850
Author(s):  
Yue Liu

Purpose The purpose of this paper is to clarify the relationship between fatigue life and kinematics of angular contact ball bearing. It proposes a new modeling method of spin to roll ratio based on raceway friction, which is more accurate than the traditional raceway control theory. Design/methodology/approach The uniform model of spin to roll ratio based on raceway friction in a wide speed range is proposed using quasi-statics method, which considers centrifugal force, gyroscopic moment, friction force of raceway and other influencing factors. The accuracy is considerably improved compared with the static model without increasing too much computation. Findings A uniform model for spin to roll ratio of angular contact ball bearing based on raceway friction is established, and quite different relationships between fatigue life and speed under two operating conditions are found. Research limitations/implications The conclusion of this paper is based on the bearing basic fatigue life calculation theory provided by ISO/TS 16281; however, the accuracy of theory needs to be further verified. Practical implications This paper provides guidance for applying angular contact ball bearing, especially at a high speed. Originality/value This paper reveals the changing trend of fatigue life of angular contact ball bearing with the speed under different loads. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2020-0030


2015 ◽  
Vol 741 ◽  
pp. 443-448
Author(s):  
Bao Ming Wang ◽  
Xia Lun Yun ◽  
Xing Yao Liao ◽  
Xue Song Mei

Based on the theory of point contact thermal elastohydrodynamic lubrication (EHL),the mathematical models for the thermal EHL of high-speed angular contact ball bearing are established. Multi-grid method and multigrid integration method are respectively used to calculate out the film pressure and film thickness respectively,and the column-by-column scanning method is used to calculate temperature rise of isothermal EHL and thermal EHL. The calculation results show that, under the pure rolling condition, temperature rise of oil film temperature is mainly caused by the compression work and shear heat at inlet and the heat in contact zone mainly comes from the inlet and the heat conduction around; the temperature rise results in oil viscosity lower and the lubricating film thinner ,in this way it reduces the lubrication performance in contact pair.


Author(s):  
Wenwu Wu ◽  
Jun Hong ◽  
Xiaohu Li ◽  
Yang Li ◽  
Baotong Li

With the increasing demand of higher operating speed for bearing system, more challenges have been exposed on the maintaining of the bearing performance. Preloading is an effective method to handle these challenges. Traditionally, the preloading of bearing system has been applied by uniform approaches such as rigid preload and constant preload. However, this treatment may hardly deal with the optimization of preloading problem due to the non-uniformity of the bearing stiffness becomes more apparent under high-speed operating conditions. A novel and practical approach is therefore presented in this paper to incorporate the non-uniformity effect to improve the structural performance of bearing under actual operating conditions. Firstly, the critical relationship between the stiffness behaviour and the non-uniform preload is evaluated for bearing system. The stiffness problem of angular contact ball bearing system is then formulated analytically by Jones’ model. With this approach, boundary conditions are achieved to solve the local contact deformation and predict the bearing life under non-uniform preload. Finally, both the uniform preload and the non-uniform preload cases for bearing system are simulated under various operating conditions. Comparing with traditional methods, the proposed method can provide a better solution in both stiffness and life that will enable a designer to obtain a deep insight on the optimization of bearing system.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Wang Yunlong ◽  
Wang Wenzhong ◽  
Li Yulong ◽  
Zhao Ziqiang

Lubrication analysis of rolling bearing is often conducted with assumed operating conditions, which does not consider the effect of internal dynamics of rolling bearing. In this paper, the effects of the applied load and bearing rotational speed on the lubrication performance in an angular contact ball bearing are conducted, which combines the bearing dynamic analysis and thermo-elastohydrodynamic lubrication (TEHL) analysis. First, the internal motions and contact forces are obtained from the developed bearing dynamic model, and then were integrated into the TEHL model to investigate the lubrication performance of the bearing. The results show that the rotational speed and external load has significant effects on film thickness, temperature, and power loss; if the improper axial load is applied for certain bearing speed, the lubrication performance will deteriorate and thermal failure may occur; there exists critical load or speed to keep good lubrication performance and avoid thermal failure; the skidding contributes to the thermal failure and bad lubrication performance.


Sign in / Sign up

Export Citation Format

Share Document