Development of a novel, low-viscosity UV-curable polymer system for UV-nanoimprint lithography

2007 ◽  
Vol 84 (5-8) ◽  
pp. 984-988 ◽  
Author(s):  
Marko Vogler ◽  
Sabine Wiedenberg ◽  
Michael Mühlberger ◽  
Iris Bergmair ◽  
Thomas Glinsner ◽  
...  
2018 ◽  
Vol 12 (5) ◽  
pp. 723-729
Author(s):  
Junpei Tsuchiya ◽  
Gen Nakagawa ◽  
Shin Hiwasa ◽  
Jun Taniguchi ◽  
◽  
...  

Ultraviolet nanoimprint lithography (UV-NIL) can be used to fabricate nanoscale patterns with high throughput. It is expected to serve as a low-cost technique for the production of items in large numbers. However, master molds for UV-NIL are expensive and laborious to produce, and there are problems associated with the deterioration of the master mold and damage to its nanopattern due to adhesion of the UV-curable resin. Consequently, the UV-curable resin has to combine low-viscosity characteristics for coatability with an antisticking property. Coating a master mold with a release layer is important in preventing damage to the master mold or adhesion between the mold and the UV-curable resin. However, the released layer deteriorates as the master mold is repeatedly used to fabricate nanopatterns. By contrast, the use of a replica mold is a valuable technique for preventing the deterioration of the master mold, and there have been several studies on the fabrication of replicas of master molds with the use of UV-curable resins. In many cases, the fabrication of nanopatterns with replica molds requires the use of a release agent. In a previous study, we developed a material for replica molds that does not require a release agent. This material consisted of a UV-curable resin with an antifouling effect that was prepared from cationically polymerizable UV-curable and epoxy-modified fluorinated resins. With the use of this material, replica molds with patterns of pillars or holes were fabricated with UV-NIL. The lifetime of the mold with the nanopattern of pillars was shorter than that with holes. In addition, the replica mold with the pillar-shaped nanopattern had numerous defects and allowed adhesion of the transfer resin after repeated efforts. Herein, we describe an improved release-agent-free hard replica mold. We transferred large numbers of nanopatterns of pillars from the replica mold, and evaluated the error rate and contact angle of our improved release-agent-free hard replica mold. The resulting release-agent-free replica mold with a nanopattern of pillars was capable of transferring up to 1000 sequential imprints. In addition, to improve the release properties of the transfer resin, we included an additive to the transfer resin that contained a reactive fluorinated material. This material improved the release properties of the transfer resin and mitigated the deterioration of the contact angle and increase in the error rate.


2020 ◽  
Vol 12 (6) ◽  
pp. 779-783
Author(s):  
Man Zhang ◽  
Liang-Ping Xia ◽  
Sui-Hu Dang ◽  
A-Xiu Cao ◽  
Qi-Ling Deng ◽  
...  

In this paper, we propose a novel kind of UV click-polymerization thiol-ene copolymers as nanoimprint lithography resists for sub-70 nm resolution patterns. High-precision mold imprint and release are two of the most critical steps of nanoimprint lithography, which requires the resists with properties of excellent conformal replication and low surface energy. Conventional UV-curable resists used in nanoimprint lithography, such as acrylate, epoxy resin, and vinyl ether, cannot satisfy all these properties requirements because they exhibit surface oxygen inhibition during polymerization, or materials fracture and delamination during mold releasing. A novel kind of thiol-ene copolymers have been investigated in this study, which have many properties favorable for use as nanoimprint lithography resists to imprint sub-70 nm and high-aspect-ratio nanostructures. These properties include sufficiently low viscosity and high Young's modulus, low surface energy for easy demolding, polymerization in benign ambient, and in particular, high chemical-etch resistance. These excellent properties give improve nanoimprinting results.


2007 ◽  
Author(s):  
Marko Vogler ◽  
Markus Bender ◽  
Ulrich Plachetka ◽  
Andreas Fuchs ◽  
Sabine Wiedenberg ◽  
...  

2021 ◽  
Vol 157 ◽  
pp. 106324
Author(s):  
Zefei Yuan ◽  
Qiaochu Liu ◽  
Xueyi Pan ◽  
Jiao Wang ◽  
Ming Jin ◽  
...  

2015 ◽  
Vol 731 ◽  
pp. 488-491
Author(s):  
Fu Qiang Chu ◽  
Yu Xin Liu ◽  
Chang Li Xu

The bonding mechanism between water-based UV curable ink and active groups on paper’s fiber during curing process was studied in this paper. Low viscosity water-based UV-cured resin was synthesized by epoxy resins, epoxy diluent, acrylic acid and maleic anhydride in the presence of catalyst. The viscosity of the synthesis system and synthetic products were significantly reduced when epoxy diluent was added to replace parts of the epoxy resin. Epoxy diluent was very useful in reducing the viscosity of the product, but over-dose would have negative effects on the quality of the cured film. The water-based epoxy acrylate prepolymer was used as the substitution for the ink to investigate the binding mechanism between the active groups of prepolymer and fiber under UV irradiation. The prepolymer and photoinitiator were mixed and the mixture was diluted to an appropriate viscosity by a small amount of water, then printed on the paper by the method of analog printing and curred by UV curing machine. The printed paper was used to extract lignin by enzymatic/mild acidolysis. FT-IR was used to characterize the changes of the active groups in lignin. The results showed that the changes of active groups in lignin were founded in the existence of ultraviolet and photoinitiator, which consistent with the change of double bonds in prepolymer. The free radicals produced by photoinitiator in curing process not only promoted the double bonds to polymerize, but also accelerated the active groups of lignin binding. Experiments show that chemical bonds exist between them.


2014 ◽  
Vol 644-650 ◽  
pp. 4936-4940
Author(s):  
Yan Yan Cui ◽  
Guang Xue Chen

If the pressure sensitive adhesive is coated on the back, it can be used for bonding electronic tag, overburden, protective layer, and RFID layer. The acrylate pressure sensitive adhesives are simple and less pollution, so more and more companies pay attention on this kind of binder. Since the thickness of adhesive layer is relatively small, ink-jet printing is now widely used to easily obtain thin layer and design the pressure sensitive adhesive shape of different parts. So how to get superior performance pressure sensitive adhesive which is suitable for ink-jet printing become an urgent problem in printed electronics. The experiment was conducted through solution copolymerization of various vinyl monomers which were selected on the principle of solvent parameter prepared by free radical polymerization. The monomer, initiator mixture solution was dropped in continuous and synchronization process. By regulating the amount of initiator and polymerization temperature, we could effectively reduce the system viscosity and prepare high quality high-solids acrylate UV-curable pressure sensitive adhesives with low viscosity for ink-jet printing. The influence of initiator, solvents, transfer reagents and temperature on the structure and properties of the resin were discussed.


2015 ◽  
Vol 73 (2) ◽  
pp. 571-585 ◽  
Author(s):  
Juan Li ◽  
Yihua Cui ◽  
Ke Qin ◽  
Jiachun Yu ◽  
Chi Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document