Study on the Synthesis and Property of Water-Based UV-Curable Epoxy Acrylate with Low Viscosity

Author(s):  
Zhenzhen Zhang ◽  
Jilei Chao ◽  
Fuqiang Chu
2015 ◽  
Vol 731 ◽  
pp. 488-491
Author(s):  
Fu Qiang Chu ◽  
Yu Xin Liu ◽  
Chang Li Xu

The bonding mechanism between water-based UV curable ink and active groups on paper’s fiber during curing process was studied in this paper. Low viscosity water-based UV-cured resin was synthesized by epoxy resins, epoxy diluent, acrylic acid and maleic anhydride in the presence of catalyst. The viscosity of the synthesis system and synthetic products were significantly reduced when epoxy diluent was added to replace parts of the epoxy resin. Epoxy diluent was very useful in reducing the viscosity of the product, but over-dose would have negative effects on the quality of the cured film. The water-based epoxy acrylate prepolymer was used as the substitution for the ink to investigate the binding mechanism between the active groups of prepolymer and fiber under UV irradiation. The prepolymer and photoinitiator were mixed and the mixture was diluted to an appropriate viscosity by a small amount of water, then printed on the paper by the method of analog printing and curred by UV curing machine. The printed paper was used to extract lignin by enzymatic/mild acidolysis. FT-IR was used to characterize the changes of the active groups in lignin. The results showed that the changes of active groups in lignin were founded in the existence of ultraviolet and photoinitiator, which consistent with the change of double bonds in prepolymer. The free radicals produced by photoinitiator in curing process not only promoted the double bonds to polymerize, but also accelerated the active groups of lignin binding. Experiments show that chemical bonds exist between them.


2010 ◽  
Vol 174 ◽  
pp. 385-388
Author(s):  
Fu Qiang Chu

Water-based UV-curable prepolymers are novel environmentally friendly materials. The blending property of two kinds of the prepolymers, water-based UV-curable polyurethane acrylate (UVPU) and water-based UV-curable epoxy acrylate (WEA), was studied in this paper. Blending compatibility, curing rate, optical and mechanical properties, and the cross-section morphology of the cured films of UVPU and WEA were investigated by Fourier transform infrared (FTIR), UV-visible spectrophotometer (UV-vis) and Environmental scanning electron microscopy (ESEM). Results indicated that the two prepolymers had good blending compatibility and high curing rate under UV radiation. The elongation at break of the cured film by WEA mixed with 20 wt% UVPU had 1.5 times increase compared to pure WEA, and the gloss increased 23% compared to pure UVPU, but the tensile strength decreased slightly. The morphology showed that the molecules of the two prepolymers polymerized each other and formed a network similar to the structure of Interpenetrating Polymer Networks (IPN). The comprehensive properties of the film were improved by blending of WEA and UVPU, and could be widely applied in the fields of coating varnish or printing ink.


Author(s):  
Atasheh Soleimani-Gorgani ◽  
Farhood Najafi ◽  
Fatemeh Mohammadrezaei ◽  
Behzad Shirkavand Hadavand

2021 ◽  
Vol 157 ◽  
pp. 106324
Author(s):  
Zefei Yuan ◽  
Qiaochu Liu ◽  
Xueyi Pan ◽  
Jiao Wang ◽  
Ming Jin ◽  
...  

2012 ◽  
Vol 74 (1) ◽  
pp. 142-150 ◽  
Author(s):  
Ping Liu ◽  
Aijuan Gu ◽  
Guozheng Liang ◽  
Qingbao Guan ◽  
Li Yuan

2021 ◽  
Vol 28 (10) ◽  
Author(s):  
Pundalik Mali ◽  
Narendra Sonawane ◽  
Vikas Patil ◽  
Ravi Mawale ◽  
Nilesh Pawar

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 98
Author(s):  
Yaling Da ◽  
Jianxing Liu ◽  
Zixian Gao ◽  
Xiangxin Xue

In this work, a series of epoxy acrylate (EA)/mica composite coatings were synthesized through introducing mica powders of different particle size into epoxy acrylate coatings and using an ultraviolet (UV) curing technique to investigate the influence of mica particle size on the coatings. Mica powders of different particle sizes were obtained by ball-milling for 4, 8, 12, 16, and 20 h with a planetary high-energy ball mill. The particle size and morphologies of ball-milled mica powders were characterized by laser particle size analyzer and scanning electron microscopy (SEM). The results indicated that planetary ball-milling reduced the particle size of mica powders effectively. Mica powders that were un-ball-milled and ball-milled were added into the epoxy acrylate matrix by a blending method to synthesize the organic-inorganic UV curable coatings. The optical photographs of the coatings showed greater stability of liquid mixtures with smaller particle size fillers. The chemical structures of EA/mica composite coatings were investigated by Fourier transform infrared spectroscopy (FTIR), and the conversion rate of C=C bonds was calculated. The results indicated that the C=C conversion of coatings with mica powders of smaller particle sizes was higher. Tests of mechanical properties and tests using electrochemical impedance spectroscopy (EIS) showed that pencil hardness, impact resistance, and coating resistance were improved due to the reduction of mica powders particle size.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Emrah Uysal ◽  
Mustafa Çakir ◽  
Bülent Ekici

Purpose Traditional nanocomposite production methods such as in situ polymerization, melt blending and solvent technique, have some deficits. Some of these are non-homogeneous particle distribution, setup difficulties, time-consuming and costly. On the other hand, three-dimensional printing technology is a quite popular method. Especially, Stereolithography (SLA) printing offers some benefits such as fast printing, easy setup and smooth surface specialties. Furthermore, surface modification of Graphene Oxide (GO) and its effects on polymer nanocomposites are quite important. The purpose of this study is to examine the effect of surface modification of GO nanoparticles on the mechanical properties and morphology of epoxy acrylate (BisGMA/1,6 hexane diol diacrylate) matrix nanocomposites. Design/methodology/approach In this study, Ultraviolet (UV) curable end groups of synthesized resin were linked to functional groups of graphene oxide, which are synthesized by the Tour method, which is a kind of modified Hummer method. In addition, synthesized GO nanoparticle’s surfaces were modified by 3-(methacryloyloxy) propyl trimethoxysilane. Significant weight percentages of GO were added into the epoxy acrylate resin. Different Wt.% of modified graphene oxide/acrylate resins was used to print test specimens with SLA type three-dimensional printer. Findings Surface modification has a significant effect on tensile strength for graphene oxide nanoparticles contained composites. In addition, a specific trend was not observed for tensile test results of non-modified graphene oxide. The tendency of impact and hardness test finding were similar for both surfaces modified and non-modified nanoparticles. Finally, the distribution of particles was homogeneous. Originality/value This paper is unique because of the inclusion of both surface modifications of graphene oxide nanoparticles and SLA production of nanocomposites with its own production of three-dimensional printer and photocurable polymer resin.


Sign in / Sign up

Export Citation Format

Share Document