Microfluidic modulus for convenient cell culture and screening experiments

2007 ◽  
Vol 84 (5-8) ◽  
pp. 1694-1697 ◽  
Author(s):  
C. Crozatier ◽  
I. Tapsoba ◽  
L.P. Xu ◽  
D. Han ◽  
L. Sensebé ◽  
...  
2021 ◽  
Author(s):  
Carolina Nunes ◽  
Jasper Anckaert ◽  
Fanny De Vloed ◽  
Jolien De Wyn ◽  
Kaat Durinck ◽  
...  

Biomedical researchers are moving towards high-throughput screening, as this allows for automatization, better reproducibility and more and faster results. High-throughput screening experiments encompass drug, drug combination, genetic perturbagen or a combination of genetic and chemical perturbagen screens. These experiments are conducted in real-time assays over time or in an endpoint assay. The data analysis consists of data cleaning and structuring, as well as further data processing and visualisation, which, due to the amount of data, can easily become laborious, time consuming, and error-prone. Therefore, several tools have been developed to aid researchers in this data analysis, but they focus on specific experimental set-ups and are unable to process data of several time points and genetic-chemical perturbagen screens together. To meet these needs, we developed HTSplotter, available as web tool and Python module, that performs automatic data analysis and visualisation of either endpoint or real-time assays from different high-throughput screening experiments: drug, drug combination, genetic perturbagen and genetic-chemical perturbagen screens. HTSplotter implements an algorithm based on conditional statements in order to identify experiment type and controls. After appropriate data normalization, HTSplotter executes downstream analyses such as dose-response relationship and drug synergism by the Bliss independence method. All results are exported as a text file and plots are saved in a PDF file. The main advantage of HTSplotter over other available tools is the automatic analysis of genetic-chemical perturbagen screens and real-time assays where results are plotted over time. In conclusion, HTSplotter allows for the automatic end-to-end data processing, analysis and visualisation of various high-throughput in vitro cell culture screens, offering major improvements in terms of versatility, convenience and time over existing tools.


Author(s):  
W.N. Bentham ◽  
V. Rocha

It has been an interest of our lab to develop a mammary epethelial cell culture system that faithfully duplicates the in vivo condition of the lactating gland. Since the introduction of collagen as a matrix on which cells are cultivated other E.C.M. type matrices have been made available and are used in many cell culture techniques. We have previously demonstrated that cells cultured on collagen and Matrigel do not differentiate as they do in vivo. It seems that these cultures often produce cells that show a disruption in the secretory process. The appearance of large ribosomal studded vesicles, that specifically label with antibody to casein, suggest an interruption of both protein maturation and secretion at the E.R. to golgi transition. In this report we have examined cultures on collagen and Matrigel at relative high and low seeding densities and compared them to cells from the in vivo condition.


Author(s):  
K. Pegg-Feige ◽  
F. W. Doane

Immunoelectron microscopy (IEM) applied to rapid virus diagnosis offers a more sensitive detection method than direct electron microscopy (DEM), and can also be used to serotype viruses. One of several IEM techniques is that introduced by Derrick in 1972, in which antiviral antibody is attached to the support film of an EM specimen grid. Originally developed for plant viruses, it has recently been applied to several animal viruses, especially rotaviruses. We have investigated the use of this solid phase IEM technique (SPIEM) in detecting and identifying enteroviruses (in the form of crude cell culture isolates), and have compared it with a modified “SPIEM-SPA” method in which grids are coated with protein A from Staphylococcus aureus prior to exposure to antiserum.


Author(s):  
W. Shain ◽  
H. Ancin ◽  
H.C. Craighead ◽  
M. Isaacson ◽  
L. Kam ◽  
...  

Neural protheses have potential to restore nervous system functions lost by trauma or disease. Nanofabrication extends this approach to implants for stimulating and recording from single or small groups of neurons in the spinal cord and brain; however, tissue compatibility is a major limitation to their practical application. We are using a cell culture method for quantitatively measuring cell attachment to surfaces designed for nanofabricated neural prostheses.Silicon wafer test surfaces composed of 50-μm bars separated by aliphatic regions were fabricated using methods similar to a procedure described by Kleinfeld et al. Test surfaces contained either a single or double positive charge/residue. Cyanine dyes (diIC18(3)) stained the background and cell membranes (Fig 1); however, identification of individual cells at higher densities was difficult (Fig 2). Nuclear staining with acriflavine allowed discrimination of individual cells and permitted automated counting of nuclei using 3-D data sets from the confocal microscope (Fig 3). For cell attachment assays, LRM5 5 astroglial cells and astrocytes in primary cell culture were plated at increasing cell densities on test substrates, incubated for 24 hr, fixed, stained, mounted on coverslips, and imaged with a 10x objective.


2007 ◽  
Vol 177 (4S) ◽  
pp. 260-260 ◽  
Author(s):  
Hiroaki Kawanishi ◽  
Yoshiyuki Matsui ◽  
Toshinari Yamasaki ◽  
Takeshi Takahashi ◽  
Hiroyuki Nishiyama ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 295-295
Author(s):  
Fernando C. Delvecchio ◽  
Ricardo M. Brizuela ◽  
Karen J. Byer ◽  
W. Patrick Springhart ◽  
Saeed R. Khan ◽  
...  

2009 ◽  
Author(s):  
Ivan Zanoni ◽  
Renato Ostuni ◽  
Francesca Granucci
Keyword(s):  

Author(s):  
Laura Pacey ◽  
Shelley Stead ◽  
Jacqueline Gleave ◽  
Kasia Tomczyk ◽  
Laurie Doering

Sign in / Sign up

Export Citation Format

Share Document