A comparative experimental investigation on responsivity and response speed of photo-diode and photo-BJT structures integrated in a low-cost standard CMOS process

2015 ◽  
Vol 46 (11) ◽  
pp. 997-1001
Author(s):  
Nikola Katic ◽  
Alexandre Schmid ◽  
Yusuf Leblebici
2014 ◽  
Vol 35 (3) ◽  
pp. 034014 ◽  
Author(s):  
Ning Shen ◽  
Zhen'an Tang ◽  
Jun Yu ◽  
Zhengxing Huang

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yong He ◽  
Hong Zeng ◽  
Yangyang Fan ◽  
Shuaisheng Ji ◽  
Jianjian Wu

In this paper, we proposed an approach to detect oilseed rape pests based on deep learning, which improves the mean average precision (mAP) to 77.14%; the result increased by 9.7% with the original model. We adopt this model to mobile platform to let every farmer able to use this program, which will diagnose pests in real time and provide suggestions on pest controlling. We designed an oilseed rape pest imaging database with 12 typical oilseed rape pests and compared the performance of five models, SSD w/Inception is chosen as the optimal model. Moreover, for the purpose of the high mAP, we have used data augmentation (DA) and added a dropout layer. The experiments are performed on the Android application we developed, and the result shows that our approach surpasses the original model obviously and is helpful for integrated pest management. This application has improved environmental adaptability, response speed, and accuracy by contrast with the past works and has the advantage of low cost and simple operation, which are suitable for the pest monitoring mission of drones and Internet of Things (IoT).


2013 ◽  
Vol 543 ◽  
pp. 176-179 ◽  
Author(s):  
D.Q. Zhao ◽  
Xia Zhang ◽  
P. Liu ◽  
F. Yang ◽  
C. Lin ◽  
...  

In this work we studied the fabrication of a monolithic bimaterial micro-cantilever resonant IR sensor with on-chip drive circuits. The effects of high temperature process and stress induced performance degradation were investigated. The post-CMOS MEMS (micro electro mechanical system) fabrication process of this IR sensor is the focus of this paper, starting from theoretical analysis and simulation, and then moving to experimental verification. The capacitive cantilever structure was fabricated by surface micromachining method, and drive circuits were prepared by standard CMOS process. While the stress introduced by MEMS films, such as the tensile silicon nitride which works as a contact etch stopper layer for MOSFETs and releasing stop layer for the MEMS structure, increases the electron mobility of NMOS, PMOS hole mobility decreases. Moreover, the NMOS threshold voltage (Vth) shifts, and transconductance (Gm) degrades. An additional step of selective removing silicon nitride capping layer and polysilicon layer upon IC area were inserted into the standard CMOS process to lower the stress in MOSFET channel regions. Selective removing silicon nitride and polysilicon before annealing can void 77% Vth shift and 86% Gm loss.


Author(s):  
M. Fischer ◽  
M. Nagele ◽  
D. Eichner ◽  
C. Schollhorn ◽  
R. Strobel

Sign in / Sign up

Export Citation Format

Share Document