Physical design of quantum circuits in ion trap technology – A survey

2016 ◽  
Vol 55 ◽  
pp. 116-133 ◽  
Author(s):  
Naser Mohammadzadeh
2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Naser Mohammadzadeh ◽  
Tayebeh Bahreini ◽  
Hossein Badri

Physical design and synthesis are two key processes of quantum circuit design methodology. The physical design process itself decomposes into scheduling, mapping, routing, and placement. In this paper, a mathematical model is proposed for mapping, routing, and scheduling in ion-trap technology in order to minimize latency of the circuit. The proposed model which is a mixed integer linear programming (MILP) model gives the optimal locations for gates and the best sequence of operations in terms of latency. Experimental results show that our scheme outperforms the other schemes for the attempted benchmarks.


2020 ◽  
Vol 117 (41) ◽  
pp. 25402-25406
Author(s):  
D. Zhu ◽  
S. Johri ◽  
N. M. Linke ◽  
K. A. Landsman ◽  
C. Huerta Alderete ◽  
...  

Finite-temperature phases of many-body quantum systems are fundamental to phenomena ranging from condensed-matter physics to cosmology, yet they are generally difficult to simulate. Using an ion trap quantum computer and protocols motivated by the quantum approximate optimization algorithm (QAOA), we generate nontrivial thermal quantum states of the transverse-field Ising model (TFIM) by preparing thermofield double states at a variety of temperatures. We also prepare the critical state of the TFIM at zero temperature using quantum–classical hybrid optimization. The entanglement structure of thermofield double and critical states plays a key role in the study of black holes, and our work simulates such nontrivial structures on a quantum computer. Moreover, we find that the variational quantum circuits exhibit noise thresholds above which the lowest-depth QAOA circuits provide the best results.


2020 ◽  
Author(s):  
Oisin Shiels ◽  
P. D. Kelly ◽  
Cameron C. Bright ◽  
Berwyck L. J. Poad ◽  
Stephen Blanksby ◽  
...  

<div> <div> <div> <p>A key step in gas-phase polycyclic aromatic hydrocarbon (PAH) formation involves the addition of acetylene (or other alkyne) to σ-type aromatic radicals, with successive additions yielding more complex PAHs. A similar process can happen for N- containing aromatics. In cold diffuse environments, such as the interstellar medium, rates of radical addition may be enhanced when the σ-type radical is charged. This paper investigates the gas-phase ion-molecule reactions of acetylene with nine aromatic distonic σ-type radical cations derived from pyridinium (Pyr), anilinium (Anl) and benzonitrilium (Bzn) ions. Three isomers are studied in each case (radical sites at the ortho, meta and para positions). Using a room temperature ion trap, second-order rate coefficients, product branching ratios and reaction efficiencies are reported. </p> </div> </div> </div>


2013 ◽  
Vol 5 (1) ◽  
Author(s):  
Lily M.G. Panggabean ◽  
Abdullah Rasyid ◽  
Zarrah Duniani ◽  
Yana Meliana ◽  
Indah Kurniasih

Trigliceride or triacylglicerol (TAG) composition in crude oil of sixteen strain of marine diatom has been detected by spectra analyses on an Electrospray - Ion Trap – Mass Spectrometry (ESI-IT-MS) HCT Bruker-Daltonic GmbH instrument with AgNO3 used as coordination ionization agent. Biomass samples of each microalga strain were taken from early and late stationary cultures in f/2 enriched seawater and algal oils were extracted according to Bligh and Dyer. Results from spectra analysis showed that P-Pt-P (C16:0-C16:1-C16:0) were distinguished in TAG from diatom strains Chaetoceros sp.1, Chaetoceros sp.2, Thalasiossira sp.1, Thalasiossira sp.2, Thalasiossira sp.3, Navicula sp. 1, Navicula sp. 2, Navicula sp. 3, Navicula sp. 4, Nitzschia sp. 2 and Amphora sp. In contrast, TAGs in Melosira sp. included P-P-P (C16:0-C16:0-C16:0) and P-P-O (C16:0-C16:0-C18:1) were identified. TAGs from Chaetoceros sp. were the most varies among samples, i.e. P-Pt-P (C16:0-C16:1-C16:0), A-P-M (C20:4-C16:0-C14:0), P-Pt-Lt (C16:0-C16:1-C18:3), P-Pt-A (C16:0-C16:1-C20:4), D-P-P (C22:6-C16:0-C16:0), A-Ln-P (C20:4-C18:2-C16:0). Various TAGs were also detected in Nitzschia sp.2, i.e. P-Pt-M (C16:0-C16:1-C14:0), P-Pt-P (C16:0-C16:1-C16:0), P-Pt-S (C16:0-C16:1-C18:0), P-Pt-A (C16:0-C16:1-C20:4). TAGs composition in Skeletonema strains that similar to those in Nitzschia sp.1 has longer carbon, i.e. P-P-O (C16:0-C16:0-C18:1), P-O-O (C16:0-C18:1-C18:1) and O-O-O (C18:1-C18:1-C18:1). TAGs with longer carbon chain and more double bond including highly unsaturated fatty acid C20:4 were increased with culture age in diatoms Chaetoceros sp.1, Chaetoceros sp.2, Thalasiossira sp.2, Navicula sp.1 and Nitzschia sp. 2.Keywords: diatom, TAG, ESI-IT-MS, f/2, early and late stationary


Sign in / Sign up

Export Citation Format

Share Document