The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes

2005 ◽  
Vol 260 (1-2) ◽  
pp. 45-55 ◽  
Author(s):  
Y LI ◽  
T CHUNG ◽  
C CAO ◽  
S KULPRATHIPANJA
2015 ◽  
Vol 3 (8) ◽  
pp. 4510-4521 ◽  
Author(s):  
Gongping Liu ◽  
Wei-Song Hung ◽  
Jie Shen ◽  
Qianqian Li ◽  
Yun-Hsuan Huang ◽  
...  

Molecular interactions were constructed to control polymer chain conformation to fabricate mixed matrix membranes with tunable free volumes, exhibiting simultaneously improved butanol permeability and selectivity.


2014 ◽  
Vol 625 ◽  
pp. 653-656 ◽  
Author(s):  
Biruh Shimekit ◽  
Azmi Mohd Shariff ◽  
Hilmi Mukhtar ◽  
Mohamad Azmi Bustam ◽  
Ali E.I. Elkhalifah ◽  
...  

Development of novel mixed matrix membranes (MMMs) has become frontier candidates for improving the upper bound trade-off curve between permeability and selectivity of gases for industrial polymeric membranes. However, fabrication of ideal MMMs is practically challenging as the dispersion of inorganic phase into the polymer may produce polymeric-inorganic interfacial defects at the vicinity of the polymer matrix. For instance, the inorganic phase may cause interfacial void, polymer chain rigidification or partial pore blockage on the overall MMMs. Since there are only few studies that specifically focus on the issues of the interfacial morphology of MMMs, therefore, the present study provides brief description of the aforementioned interfacial (non-ideal) defects of MMMs and summarizes the techniques used to repair the interfacial defects for enhanced gas separation in MMMs.


RSC Advances ◽  
2015 ◽  
Vol 5 (124) ◽  
pp. 102350-102361 ◽  
Author(s):  
Clara Casado-Coterillo ◽  
Ana Fernández-Barquín ◽  
Beatriz Zornoza ◽  
Carlos Téllez ◽  
Joaquín Coronas ◽  
...  

The CO2 permeability and CO2/N2 selectivity of IL–CS membranes is improved by adding nano-HKUST-1 and ZIF-8, and predicted accurately by Maxwell-derived model as a function of interfacial contact, crystallinity and pore blockage with temperature.


2017 ◽  
Vol 77 (2) ◽  
pp. 346-354 ◽  
Author(s):  
Pourya Moradihamedani ◽  
Abdul Halim Abdullah

Abstract Removal of low-concentration ammonia (1–10 ppm) from aquaculture wastewater was investigated via polysulfone (PSf)/zeolite mixed matrix membrane. PSf/zeolite mixed matrix membranes with different weight ratios (90/10, 80/20, 70/30 and 60/40 wt.%) were prepared and characterized. Results indicate that PSf/zeolite (80/20) was the most efficient membrane for removal of low-concentration ammonia. The ammonia elimination by PSf/zeolite (80/20) from aqueous solution for 10, 7, 5, 3 and 1 ppm of ammonia was 100%, 99%, 98.8%, 96% and 95% respectively. The recorded results revealed that pure water flux declined in higher loading of zeolite in the membrane matrix due to surface pore blockage caused by zeolite particles. On the other hand, ammonia elimination from water was decreased in higher contents of zeolite because of formation of cavities and macrovoids in the membrane substructure.


2018 ◽  
Vol 18 (8) ◽  
pp. 4365-4371 ◽  
Author(s):  
Lili Fan ◽  
Zixi Kang ◽  
Yuting Shen ◽  
Sasa Wang ◽  
Haoru Zhao ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Gholamhossein Vatankhah ◽  
Babak Aminshahidy

Abstract MCM-41 and SBA-15 mesoporous silica materials with different pore sizes (3.08 nm for small pore size MCM-41 (P 1), 5.89 nm for medium pore size SBA-15 (P 2), and 7.81 nm for large pore size SBA-15 (P 3)) were synthesized by the hydrothermal method and then functionalized with 3-aminopropyltrietoxysilane by postsynthesis treatments. Next, polysulfone-mesoporous silica mixed matrix membranes (MMMs) were prepared by the solution casting method. The obtained materials and MMMs were characterized by various techniques including X-ray diffraction, scanning electron microscopy, and N2 adsorption-desorption, and Brunauer-Emmett-Teller method to examine the crystallinity, morphology, and particle size, pore volume, specific surface area, and pore size distribution, respectively. Finally, the gas permeation rates of prepared MMMs were measured in 8 bar and 25 °C and the effect of pore size of modified and unmodified mesoporous silica on the gas separation performance of these MMMs were investigated. The experimental results indicate that the carbon dioxide (CO2) and methane (CH4) permeability and CO2/CH4 selectivity were increased with an enhancement in the particle pore size.


RSC Advances ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 3536-3546 ◽  
Author(s):  
Ana Fernández-Barquín ◽  
Riccardo Rea ◽  
Davide Venturi ◽  
Marco Giacinti-Baschetti ◽  
Maria Grazia De Angelis ◽  
...  

CO2 permeability of zeolite A/PTMSP MMM increases with water content in the system, enhancing CO2/N2 and CO2/CH4 selectivities of PTMSP.


Sign in / Sign up

Export Citation Format

Share Document