Fouling of ultrafiltration membrane by effluent organic matter: A detailed characterization using different organic fractions in wastewater

2006 ◽  
Vol 278 (1-2) ◽  
pp. 232-238 ◽  
Author(s):  
H.K. Shon ◽  
S. Vigneswaran ◽  
In S. Kim ◽  
J. Cho ◽  
H.H. Ngo
1996 ◽  
Vol 34 (9) ◽  
pp. 157-164 ◽  
Author(s):  
Kim C.-H. ◽  
M. Hosomi ◽  
A. Murakami ◽  
M. Okada

Effects of clay on fouling due to organic substances and clay were evaluated by model fouling materials and kaolin. Model fouling materials selected were protein, polysaccharide, fulvic acid, humic acid and algogenic matter (EOM:ectracellular organic matter, microbial decomposition products) and kaolin was selected as the clay material. Polysulfone membrane (MWCO(Molecular Weight Cut-Off) 10,000, 50,000 and 200,000) was used as an ultrafiltration membrane. In particular, the flux measurement of solutions containing algogenic matter used an ultrafiltration membrane of MWCO 50,000. The flux of protein and polysaccharide with coexistence of kaolin increased in the case of the ratio of MW/MWCO being greater than one, but did not increase in the case of the MW/MWCO ratio being below one. In contrast, the flux of fulvic acid and humic acid with coextence of kaolin decreased regardless of the ratio of MW/MWCO. The addition of dispersion agent and coagulant in the organic substances and kaolin mixture solution changed the size distribution of kaolin, and resulted in a change of the flux. EOM and microbial decomposition products decreased with the increase of the fraction of organic matter having molecular weight more than MWCO of membrane. The flux of the algogenic organic matter with coexistence of kaolin decreased with the increase of the amount of kaolin. It was suggested that the decline of the flux with coexistence of kaolin was due to the change of the resistance of the kaolin cake layer corresponding to the change in kaolin size distribution with charge.


Author(s):  
Nadine Siebdrath ◽  
Bertram Skibinski ◽  
Shiju Abraham ◽  
Roy Bernstein ◽  
Robert Berger ◽  
...  

Organic fouling in RO desalination of tertiary wastewater is of major concern in the decline in membrane performance.


2001 ◽  
Vol 43 (10) ◽  
pp. 225-232 ◽  
Author(s):  
C. Jarusutthirak ◽  
G. Amy

The reuse of treated wastewater to augment natural drinking water supplies is receiving serious consideration. Treatment of secondary and tertiary effluent by membrane filtration was investigated by assessing nanofiltration (NF) membrane and ultrafiltration (UF) membranes in bench-scale experiments. It was found that secondary and tertiary effluent contained high concentration of effluent organic matter (EfOM), contributing EfOM-related fouling. Flux decline and EfOM rejection tests were evaluated, using a dead-end stirred cell filtration unit. Surface charge and molecular weight cut-off (MWCO) of membranes were significant factors in membrane performance including permeability and EfOM-rejection.


2018 ◽  
Vol 5 (8) ◽  
pp. 180586 ◽  
Author(s):  
Xudong Wang ◽  
Danxi Huang ◽  
Botao Cheng ◽  
Lei Wang

Adsorption of organic matter on membranes plays a major role in determining the fouling behaviour of membranes. This study investigated effluent organic matter (EfOM) adsorption behaviour onto poly(vinylidene fluoride) (PVDF) membrane blended with SiO 2 nanoparticles using quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM). The QCM-D results suggested that low adsorption of EfOM and an EfOM layer with a non-rigid and open structure was formed on SiO 2 -terminated membrane surfaces. Conformational assessment showed that EfOM undergoes adsorption via two steps: (i) in the initial stage, a rapid adsorption of EfOM accumulated onto the membrane; (ii) the change in dissipation was still occurring when the adsorption frequency reached balance, and the layer tended towards a more rearranged or organized secondary structure upon adsorption onto the more hydrophilic surface. For the AFM force test, when a self-made EfOM-coated probe approached the membrane, a ‘jump-in’ was observed for the hydrophobic membrane after repulsion at a small distance, while only repulsive forces were observed for PVDF/SiO 2 membranes. This study demonstrated that the PVDF/SiO 2 membrane changed the entire filtration process, forming a ‘soft’ open conformation in the foulant layer.


Sign in / Sign up

Export Citation Format

Share Document