Semi-empirically derived petrophysical and thermodynamical coefficients of permselective shales—Implications on ore mineralization

2009 ◽  
Vol 343 (1-2) ◽  
pp. 171-179 ◽  
Author(s):  
Peter G. Oduor ◽  
X. Santos ◽  
K. Forward ◽  
N. Sharp ◽  
C. Bue ◽  
...  
Keyword(s):  
2021 ◽  
pp. 1-17
Author(s):  
Behnam Shafiei Bafti ◽  
István Dunkl ◽  
Saeed Madanipour

Abstract The recently developed fluorite (U–Th)/He thermochronology (FHe) technique was applied to date fluorite mineralization and elucidate the exhumation history of the Mazandaran Fluorspar Mining District (MFMD) located in the east Central Alborz Mountains, Iran. A total of 32 fluorite single-crystal samples from four Middle Triassic carbonate-hosted fluorite deposits were dated. The presented FHe ages range between c. 85 Ma (age of fluorite mineralization) and c. 20 Ma (erosional cooling during the exhumation of the Alborz Mountains). The Late Cretaceous FHe ages (i.e. 84.5 ± 3.6, 78.8 ± 4.4 and 72.3 ± 3.5 Ma) are interpreted as the age of mineralization and confirm an epigenetic origin for ore mineralization in the MFMD, likely a result of prolonged hydrothermal circulation of basinal brines through potential source rocks. Most FHe ages scatter around the Eocene Epoch (55.4 ± 3.9 to 33.1 ± 1.7 Ma), recording an important cooling event after heating by regional magmatism in an extensional tectonic regime. Cooling of the heated fluorites, as a result of thermal relaxation in response to geothermal gradient re-equilibration after the end of magmatism, or exhumation cooling during extensional tectonics characterized by lower amount of erosion are most probably the causes of the recorded Eocene FHe cooling ages. Oligocene–Miocene FHe ages (i.e. 27.6 ± 1.4 to 19.5 ± 1.1 Ma) are related to the accelerated uplift of the whole Alborz Mountains, possibly as a result of the initial collision between the Afro-Arabian and Eurasian plates further to the south.


KURVATEK ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 25-33
Author(s):  
Fatimah Fatimah

Tulakan Subdistrict, Pacitan Regency, East Java Province. This area is part of the Southern Mountain Zone of East Java, which is the Sunda-Banda magmatic arc of Oligo-Miocene age, where there are alterations and indications of valuable ore minerals. Field magnetic data is taken in an area of 1 x 1 km, with the looping method on the grid trajectory within 200 x 100 m. Then, magnetic data correction and data processing were carried out with Oasis Montaj. From the magnetic anomaly map, the value of high magnetic intensity in the southern part is fresh (intrusive) andesit-dasitic rock as host rock which causes alteration, in the middle has a low magnetic intensity value which is in the direction of the relatively NE-SW river direction, whereas in the north with high intensity is fresh andesite lava. From the image data, it can be seen that the straightness pattern of the geological structure which is dominated by the extensional structure with the direction of NE-SW and E-W is the main trap of epithermal veins carrying ore mineralization mainly Cu, Pb in the study area.


Author(s):  
O. Hrinchenko ◽  
S. Bondarenko ◽  
T. Mironchuk

Composition of granites, genetically associated pegmatites and superimposed metasomatites distributed within Shpoliano-Tashlyk ore area (Ingul megablock) is considered. It is established, that on the basis of similarity in their petrographic and petrochemical features granitoids of the area can be related to single complex. Features of ore mineralization are defined by both composition of granitoids (Sgranites) after which rare-metal pegmatites are formed and intensity of superimposed metasomatic alterations. Main minerals-concentrators of Ta and Nb mineralization in granitic pegmatites and metasomatites are represented by minerals of three isomorphic series – columbite-tantalite (Fe,Mn)(Nb,Ta,Ti)2O6, ilmenorutile-struverite (Ti,Nb,Ta)O2 and pyrochlore-microlite (Ca,Na)2Ta2O6(O,B,OH,F). Depending on geological setting such ore minerals as tapiolite, ixiolite, cassiterite, uraninite, nigerite, gahnite are commonly found in association with these minerals. Chemical composion of tantalo-niobates sampled from ore-bearing pegmatites and metasomatites is investigated by microprobe analysis. Most minerals of columbite-tantalite series are characterized by distinct and rhythmic internal zonality and contrasting mosaic structure which are related to considerable heterogeneities of their chemical composition. Within one aggregate mineral phases with wide range of values – from 9,80 to 71,0 % for Ta2O5 and from 10,6 to 70,1 % for Nb2O5 – are established. Among minerals ferruginous varieties which composition relates to Fe-columbite-tantalites (Nb2O5/Ta2O5 = 1–1,2; FeO/MnO = 2,5–6) prevail. Columbite-tantalites are characterised by high contents of admixture elements present (%): TiO2 – to 5,88; WO3 – to 3,70; SnO2 – to 9,20; Sc2O3 – to 5,40. Scandium ores occur as scandium-rich minerals that are mostly confined to the minerals of columbite-tantalite series found in Polohivka ore field. On the Ukrainian Shield high contents of Sc2O3 in tantalo-niobates are established for the first time. Minerals of ilmenorutile-struverite series do not quantitatively yield to minerals of columbite-tantalite series. For minerals of this series Nb2O5/Ta2O5 ratio varies in the range of 0,6-1,4. Among characteristic admixture-elements are prevailed (%): SnO2 – to 3,1, V2O5 – to 5,05; FeO – to 11,51, Cr2O3 – to 1,20. Minerals of pyrochlore-microlite series are of subordinate importance. For the first time by results of U-Pb dating of columbite-tantalites from Mostove ore manifestation (Shpoliano-Tashlyk area) the age of Ta-Nb mineralization is established to be about 1965 ± 25 million years.


Sign in / Sign up

Export Citation Format

Share Document