Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module

2010 ◽  
Vol 348 (1-2) ◽  
pp. 298-309 ◽  
Author(s):  
Yuan Xu ◽  
Xiaoyu Peng ◽  
Chuyang Y. Tang ◽  
Q. Shiang Fu ◽  
Shengzhe Nie
2011 ◽  
Vol 1 (3) ◽  
pp. 133-140 ◽  
Author(s):  
E. R. Cornelissen ◽  
D. J. H. Harmsen ◽  
E. F. Beerendonk ◽  
J. J. Qin ◽  
J. W. M. N. Kappelhof

Forward osmosis (FO) is a concentration driven membrane process which recently gained an increase in attention due to the development of improved FO membranes. Most of the currently available data on FO research is obtained on small laboratory-scale set-ups, thereby overlooking the effects of scaling-up to pilot or full-scale size. In this paper, FO experiments are carried out with a 10.16 cm (4-in) spiral wound FO (SWFO) Hydration Technologies Innovations (HTI) module. The performance of the SWFO module was investigated during daily experiments and the influence of two types of draw solutions (NaCl and MgCl2) was evaluated and compared to data from lab-scale FO research. Furthermore, the difference between fixed draw solution concentration and draw solution dilution was studied for both draw solutions. Salt flux was determined from the increase in: (i) conductivity; and (ii) individual ion concentration in the feed vessel. Water and salt flux values from laboratory-scale membrane FO experiments were similar but slightly lower than that of the SWFO module in the fixed draw solution concentration experiments (respectively 5 L/m2h and 3 g/m2h for 0.5 M NaCl). Salt flux values obtained from individual ion measurements were lower and more accurate compared to that determined by conductivity measurements.


2017 ◽  
Vol 76 (11) ◽  
pp. 3160-3170 ◽  
Author(s):  
Wanzhu Zhang ◽  
Lin Wang ◽  
Bingzhi Dong

Abstract The fouling behavior during forward osmosis (FO) was investigated. Tannic acid was used as a model organic foulant for natural organic matter analysis since the main characteristics are similar, and calcium ions were added at different concentrations to explore the anti-pollution capability of FO membranes. The initial permeate flux and calcium ions strength were varied in different operating conditions to describe membrane fouling with membrane cleaning methods. The observed flux decline in FO changed dramatically with the type of foulant and the type of draw solution used to provide the osmotic driving force. Calcium ions aggravated membrane fouling and decreased transmembrane flux. Membrane cleaning methods included physical and physicochemical approaches, and there was no obvious difference among the typical cleaning methods (i.e., membrane flushing with different types of cleaning fluids at various crossflow velocities and backwashing with varying osmotic driving forces) with respect to flux recovery. Ultrasonic cleaning damaged the membrane structure and decreased permeate flux, and reverse diffusion of salt from the draw solution to the feed side accelerated after cleaning.


2017 ◽  
Vol 13 (1) ◽  
pp. 94-102
Author(s):  
Ahmed Faiq Al-Alalawy ◽  
Talib Rashid Abbas ◽  
Hadeer Kadhim Mohammed

The present work aims to study forward osmosis process using different kinds of draw solutions and membranes. Three types of draw solutions (sodium chloride, sodium formate, and sodium acetate) were used in forward osmosis process to evaluate their effectiveness with respect to water flux and reverse salt flux. Experiments conducted in a laboratory-scale forward osmosis (FO) unit in cross flow flat sheet membrane cell.  Three types of membranes (Thin film composite (TFC), Cellulose acetate (CA), and Cellulose triacetate (CTA)) were used to determine the water flux under osmotic pressure as a driving force. The effect of temperature, draw solution concentration, feed and draw solution flow rate, and membrane types, were studied with respect to water flux. The results showed an increase in water flux with increasing feed temperature and draw solution concentrations In addition, the flux increased with increasing feed flow rate while the flux was inversely proportional with the draw solution flow rate. The results showed that reverse osmosis membranes (TFC and CA) are not suitable for using in FO process due to the relatively obtained low water flux when compared with the flux obtained by forward osmosis membrane (CTA). NaCl draw solution gave higher water flux than other draw solutions and at the same time, revealed higher reverse salt flux.


2017 ◽  
Vol 96 ◽  
pp. 55-60 ◽  
Author(s):  
Jongmin Jeon ◽  
Jaehak Jung ◽  
Joon Young Choi ◽  
Jaebum Kim ◽  
Suhan Kim

2009 ◽  
Vol 3 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Jian-Jun Qin ◽  
Maung Htun Oo ◽  
Guihe Tao ◽  
E. R. Cornelissen ◽  
C. J. Ruiken ◽  
...  

Objective of this study was to conduct a baseline study of osmotic membrane bioreactor (OMBR) - optimization of operating conditions in forward osmosis (FO). Experiments were conducted with an FO pilot system. Tap water was used as the feed and NaCl and MgSO4 solutions were used as draw solution. Effects of various operating conditions on flux have been investigated. In addition, pure water permeability of the FO membrane was tested. It was observed that the plant operation could be stablized within 1 h. When the membrane selective layer faced to the feed, a flux of 6.3 lm-2h-1 (LMH) was achieved at 24 atm osmotic pressure and 25 °C and effects of feed velocity and air velocity on flux were not siganificant under the testing conditions due to low external concentration polarization (ECP). However, when the selective layer faced to the draw solution, the flux was enhanced by 64% due to much reduced internal concentration polarization (ICP), the flux sharply increased with an increase in velocity of the draw solution in the laminar flow pattern range due to a countable effect of dilutive external concentration polarization (DECP) and leveled off after the flow pattern became turbulent. NaCl performed much higher efficiency than MgSO4 as an osmotic agent due to a greater solute diffusion coefficient of NaCl.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 481 ◽  
Author(s):  
Wen Yi Chia ◽  
Kuan Shiong Khoo ◽  
Shir Reen Chia ◽  
Kit Wayne Chew ◽  
Guo Yong Yew ◽  
...  

Forward osmosis (FO) and pressure-retarded osmosis (PRO) have gained attention recently as potential processes to solve water and energy scarcity problems with advantages over pressure-driven membrane processes. These processes can be designed to produce bioenergy and clean water at the same time (i.e., wastewater treatment with power generation). Despite having significant technological advancement, these bioenergy processes are yet to be implemented in full scale and commercialized due to its relatively low performance. Hence, massive and extensive research has been carried out to evaluate the variables in FO and PRO processes such as osmotic membrane, feed solutions, draw solutions, and operating conditions in order to maximize the outcomes, which include water flux and power density. However, these research findings have not been summarized and properly reviewed. The key parts of this review are to discuss the factors influencing the performance of FO and PRO with respective resulting effects and to determine the research gaps in their optimization with the aim of further improving these bioenergy processes and commercializing them in various industrial applications.


Sign in / Sign up

Export Citation Format

Share Document