Effect of transmembrane pressure on draw solution channel height and water flux in spiral wound forward osmosis module

2017 ◽  
Vol 96 ◽  
pp. 55-60 ◽  
Author(s):  
Jongmin Jeon ◽  
Jaehak Jung ◽  
Joon Young Choi ◽  
Jaebum Kim ◽  
Suhan Kim
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasamin Bide ◽  
Marzieh Arab Fashapoyeh ◽  
Soheila Shokrollahzadeh

AbstractForward osmosis (FO) process has been extensively considered as a potential technology that could minimize the problems of traditional water desalination processes. Finding an appropriate osmotic agent is an important concern in the FO process. For the first time, a nonionic surfactant-based draw solution was introduced using self-assemblies of Tween 80 and choline chloride. The addition of choline chloride to Tween 80 led to micelles formation with an average diameter of 11.03 nm. The 1H NMR spectra exhibited that all groups of Tween 80 were interacted with choline chloride by hydrogen bond and Van der Waals’ force. The influence of adding choline chloride to Tween 80 and the micellization on its osmotic activity was investigated. Despite the less activity of single components, the average water flux of 14.29 L m‒2 h‒1 was obtained using 0.15 M of Tween 80-choline chloride self-assembly as draw solution in the FO process with DI water feed solution. Moreover, various concentrations of NaCl aqueous solutions were examined as feed solution. This report proposed a possible preparation of nonionic surfactant-based draw solutions using choline chloride additive with enhanced osmotic activities that can establish an innovative field of study in water desalination by the FO process.


Membranes ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 111
Author(s):  
Alexander J. Charlton ◽  
Boyue Lian ◽  
Gaetan Blandin ◽  
Greg Leslie ◽  
Pierre Le-Clech

In an effort to improve performances of forward osmosis (FO) systems, several innovative draw spacers have been proposed. However, the small pressure generally applied on the feed side of the process is expected to result in the membrane bending towards the draw side, and in the gradual occlusion of the channel. This phenomenon potentially presents detrimental effects on process performance, including pressure drop and external concentration polarization (ECP) in the draw channel. A flat sheet FO system with a dot-spacer draw channel geometry was characterized to determine the degree of draw channel occlusion resulting from feed pressurization, and the resulting implications on flow performance. First, tensile testing was performed on the FO membrane to derive a Young’s modulus, used to assess the membrane stretching, and the resulting draw channel characteristics under a range of moderate feed pressures. Membrane apex reached up to 67% of the membrane channel height when transmembrane pressure (TMP) of 1.4 bar was applied. The new FO channels considerations were then processed by computational fluid dynamics model (computational fluid dynamics (CFD) by ANSYS Fluent v19.1) and validated against previously obtained experimental data. Further simulations were conducted to better assess velocity profiles, Reynolds number and shear rate. Reynolds number on the membrane surface (draw side) increased by 20% and shear rate increased by 90% when occlusion changed from 0 to 70%, impacting concentration polarisation (CP) on the membrane surface and therefore FO performance. This paper shows that FO draw channel occlusion is expected to have a significant impact on fluid hydrodynamics when the membrane is not appropriately supported in the draw side.


2017 ◽  
Vol 13 (1) ◽  
pp. 94-102
Author(s):  
Ahmed Faiq Al-Alalawy ◽  
Talib Rashid Abbas ◽  
Hadeer Kadhim Mohammed

The present work aims to study forward osmosis process using different kinds of draw solutions and membranes. Three types of draw solutions (sodium chloride, sodium formate, and sodium acetate) were used in forward osmosis process to evaluate their effectiveness with respect to water flux and reverse salt flux. Experiments conducted in a laboratory-scale forward osmosis (FO) unit in cross flow flat sheet membrane cell.  Three types of membranes (Thin film composite (TFC), Cellulose acetate (CA), and Cellulose triacetate (CTA)) were used to determine the water flux under osmotic pressure as a driving force. The effect of temperature, draw solution concentration, feed and draw solution flow rate, and membrane types, were studied with respect to water flux. The results showed an increase in water flux with increasing feed temperature and draw solution concentrations In addition, the flux increased with increasing feed flow rate while the flux was inversely proportional with the draw solution flow rate. The results showed that reverse osmosis membranes (TFC and CA) are not suitable for using in FO process due to the relatively obtained low water flux when compared with the flux obtained by forward osmosis membrane (CTA). NaCl draw solution gave higher water flux than other draw solutions and at the same time, revealed higher reverse salt flux.


2019 ◽  
Vol 20 (1) ◽  
pp. 240-250 ◽  
Author(s):  
Maryam Taghizadeh ◽  
Daryoush Yousefi Kebria ◽  
Farhad Qaderi

Abstract Water stress and environmental concerns have driven research into the treatment of produced water. In this study, a combination of forward osmosis and photocatalyst system was used for simultaneous salt removal and treatment of produced water. Furthermore, biosurfactant as a novel draw solution and the three types of forward osmosis membranes (cellulose triacetate with and without titanium dioxide (TiO2) and graphene oxide (GO) nanoparticles) were investigated. The morphology and distribution of the TiO2 and TiO2/GO on the membrane surface were assessed by various analyses including field emission scanning electron microscopy, energy dispersive X-ray and contact angle analysis. The results demonstrated that the reverse salt flux was only 0.2 g/m2 h. Moreover, benzene, toluene, ethylbenzene, and xylene (BTEX) removal efficiency in the cellulose triacetate with TiO2 and TiO2/GO membrane under UVC radiation was 62% and 78%, respectively, while the data obtained in visible light reached 80%. The use of TiO2 and TiO2/GO membranes significantly improved the permeability, water flux, photocatalytic degradation of pollutants and desalination of produced water.


2017 ◽  
Vol 19 ◽  
pp. 75 ◽  
Author(s):  
Suriani Husaini ◽  
Mazrul Nizam Abu Seman

<p>Recent study claimed that forward osmosis (FO) process could handle the fouling problem due it driven force based on natural osmotic pressure. However, researchers observed that FO membrane had problem with reverse solute diffusion (RSD) of draw solution. Therefore, FO membrane properties must be improved either physically or chemically in order to overcome this problem. Among all, surface modification approach has been acknowledged as a best technique to alter the membrane properties without significantly change the bulk membrane properties. In this study, polyelectrolyte FO membrane has been produced through Layer by Layer (LbL) deposition method by using Poly (diallyl-dimethylammoniumchloride), PDADMAC and Poly (sodium 4-styrene-sulfonate), PSS as an active monomers. Humic acid (HA) as part of Natural Organic Matter constituents was used as the feed solution and NaCl as a draw solution. The chemical structure and morphology of the FO membrane were characterized by FTIR and FESEM, respectively. From this study, the highest water flux and humic acid rejection were achieved at 2.5M of draw solution with value of 2.56 L/m<sup>²</sup>.h and 99%, respectively. In general, the water flux increases as the concentration of draw solutions were increased. However, it was observed that reverse salt diffusion (RSD) become worse at higher concentration of draw solution.</p><p>Chemical Engineering Research Bulletin 19(2017) 75-79</p>


2020 ◽  
Vol 400 ◽  
pp. 125857 ◽  
Author(s):  
Gemima S. Arcanjo ◽  
Flávia C.R. Costa ◽  
Bárbara C. Ricci ◽  
Ann H. Mounteer ◽  
Estela N.M.L. de Melo ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 571 ◽  
Author(s):  
Taehyung Kim ◽  
Changha Ju ◽  
Chanhyuk Park ◽  
Hyo Kang

The thermal-responsive polymers, poly(alkane-1,#-diylbis(tri-n-butylphosphonium) 4-vinylbenzenesulfonate) (PSSBP#, # = 8, 6, and 4), where # is the number of carbon atoms in the central bridge structure of the dicationic phosphonium moiety, were synthesized to examine their potential application as draw solutes in forward osmosis (FO). The polymers exhibited low critical solution temperature (LCST) characteristics in aqueous solutions, which is essential for recovering a draw solute from pure water. The LCSTs of the 20 wt% aqueous solutions of PSSBP8, PSSBP6, and PSSBP4 were confirmed to be approximately 30, 38, and 26 °C, respectively, which is advantageous in terms of energy requirements for the recovering draw solute. When the concentration of the PSSBP4 draw solution was 20 wt%, water flux and reverse solute flux were approximately 1.61 LMH and 0.91 gMH, respectively, in the active layer facing the draw solution (AL-DS) system when the feed solution was distilled water. The PSSBP# thermal-responsive draw solute has considerable potential for use as a next-generation draw solute because of its excellent osmotic performance and efficient recovery. Therefore, this study provides inspiration for novel ideas regarding structural transformations of polymers and their applicability as draw solutes.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2965
Author(s):  
Irena Petrinic ◽  
Janja Stergar ◽  
Hermina Bukšek ◽  
Miha Drofenik ◽  
Sašo Gyergyek ◽  
...  

In this study, citric acid (CA)-coated magnetite Fe3O4 magnetic nanoparticles (Fe3O4@CA MNPs) for use as draw solution (DS) agents in forward osmosis (FO) were synthesized by co-precipitation and characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic light scattering (DLS), transmission electron microscopy (TEM) and magnetic measurements. Prepared 3.7% w/w colloidal solutions of Fe3O4@CA MNPs exhibited an osmotic pressure of 18.7 bar after purification without aggregation and a sufficient magnetization of 44 emu/g to allow DS regeneration by an external magnetic field. Fe3O4@CA suspensions were used as DS in FO cross-flow filtration with deionized (DI) water as FS and with the active layer of the FO membrane facing the FS and NaCl as a reference DS. The same transmembrane bulk osmotic pressure resulted in different water fluxes for NaCl and MNPs, respectively. Thus the initial water flux with Fe3O4@CA was 9.2 LMH whereas for 0.45 M NaCl as DS it was 14.1 LMH. The reverse solute flux was 0.08 GMH for Fe3O4@CA and 2.5 GMH for NaCl. These differences are ascribed to a more pronounced internal dilutive concentration polarization with Fe3O4@CA as DS compared to NaCl as DS. This research demonstrated that the proposed Fe3O4@CA can be used as a potential low reverse solute flux DS for FO processes.


2021 ◽  
Author(s):  
Mohamed Bassiouny ◽  
Peter Nasr ◽  
Hani Sewilam

Abstract This research project aims at investigating the performance of hydroponic nutrient solutions as draw solutions for desalination using the fertilizer drawn forward osmosis (FDFO) process. Six different lettuce and leafy greens hydroponic nutrient stock solutions were prepared according to the literature and used in this study and tested on a bench-scale forward osmosis unit as draw solutions for the process. The feed solution for the process was De-Ionized water mixed with NaCl in different concentrations, to represent different salinities of brackish groundwater. The draw efficiency of each solution was measured based on water flux, specific reverse solute flux, water recovery, and salt rejection. It was concluded that of the six tested nutrient solutions, the “Resh Florida, California” solution is the recommended solution to be used as draw solution for fertilizer drawn forward osmosis, due to its high performance in terms of water recovery (15.75%), flux (11 l/m2/h), salt rejection (92%) and SRSF (highest recorded SRSF for a specific ion (SO4 2−) was 7.3 g/l), as well as its low cost, relative to the other highly performing draw solution “Chekli” ($1.07/l vs. $3.73/l).


Sign in / Sign up

Export Citation Format

Share Document