scholarly journals A carbon molecular sieve membrane-based reactive separation process for pre-combustion CO2 capture

2020 ◽  
Vol 605 ◽  
pp. 118028 ◽  
Author(s):  
Mingyuan Cao ◽  
Linghao Zhao ◽  
Dongwan Xu ◽  
Richard Ciora ◽  
Paul K.T. Liu ◽  
...  
2020 ◽  
pp. 127694
Author(s):  
Mingyuan Cao ◽  
Linghao Zhao ◽  
Dongwan Xu ◽  
Doug Parsley ◽  
Richard Ciora ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 489
Author(s):  
Chong Yang Chuah ◽  
Kunli Goh ◽  
Tae-Hyun Bae

Three different zeolite nanocrystals (SAPO-34, PS-MFI and ETS-10) were incorporated into the polymer matrix (Matrimid® 5218) as polymer precursors, with the aim of fabricating mixed-matrix carbon molecular sieve membranes (CMSMs). These membranes are investigated for their potential for air separation process. Based on our gas permeation results, incorporating porous materials is feasible to improve O2 permeability, owing to the creation of additional porosities in the resulting mixed-matrix CMSMs. Owing to this, the performance of the CMSM with 30 wt% PS-MFI loading is able to surpass the upper bound limit. This study demonstrates the feasibility of zeolite nanocrystals in improving O2/N2 separation performance in CMSMs.


Chemosensors ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 104
Author(s):  
Hung-Yang Kuo ◽  
Wei-Riu Cheng ◽  
Tzu-Heng Wu ◽  
Horn-Jiunn Sheen ◽  
Chih-Chia Wang ◽  
...  

This paper presents the synthesis and evaluation of a carbon molecular sieve membrane (CMSM) grown inside a MEMS-fabricated μ-preconcentrator for sampling highly volatile organic compounds. An array of µ-pillars measuring 100 µm in diameter and 250 µm in height were fabricated inside a microfluidic channel to increase the attaching surface for the CMSM. The surface area of the CMSM was measured as high as 899 m2/g. A GC peak amplification factor >2 × 104 was demonstrated with gaseous ethyl acetate. Up to 1.4 L of gaseous ethanol at the 100 ppb level could be concentrated without exceeding the capacity of this microchip device. Sharp desorption chromatographic peaks (<3.5 s) were obtained while using this device directly as a GC injector. Less volatile compounds such as gaseous toluene, m-xylene, and mesitylene appeared to be adsorbed strongly on CMSM, showing a memory effect. Sampling parameters such as sample volatilities, sampling capacities, and compound residual issues were empirically determined and discussed.


2018 ◽  
Vol 39 (17) ◽  
pp. 2218-2227 ◽  
Author(s):  
Li-Jing Du ◽  
Jian-Ping Huang ◽  
Bin Wang ◽  
Chen-Hui Wang ◽  
Qiu-Yan Wang ◽  
...  

2020 ◽  
Vol 132 (46) ◽  
pp. 20523-20527
Author(s):  
Oishi Sanyal ◽  
Samuel S. Hays ◽  
Nicholas E. León ◽  
Yoseph A. Guta ◽  
Arun K. Itta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document