Plasma concentrations of arginine and asymmetric dimethylarginine do not reflect their intracellular concentrations in peripheral blood mononuclear cells

Metabolism ◽  
2013 ◽  
Vol 62 (10) ◽  
pp. 1455-1461 ◽  
Author(s):  
Mariska Davids ◽  
Tom Teerlink
2010 ◽  
Vol 54 (10) ◽  
pp. 4185-4191 ◽  
Author(s):  
Jürgen Burhenne ◽  
Anne-Kathrin Matthée ◽  
Ivana Pasáková ◽  
Claudia Röder ◽  
Tilman Heinrich ◽  
...  

ABSTRACT Intracellular concentrations of antiretroviral drugs in peripheral blood mononuclear cells (PBMCs) are an important determinant of therapeutic success. In vitro data indicate that efavirenz induces several ATP-binding cassette (ABC) transporters, and pharmacogenetic studies found an association between ABCB1(C3435T) and efavirenz exposure and between this polymorphism and improved virological outcomes. We therefore aimed to clarify whether efavirenz also induces ABC transporters in vivo in PBMCs and whether intracellular concentrations might be altered after induction. Twelve healthy individuals received multiple oral doses of efavirenz over 14 days (400 mg once daily). Blood samples were drawn on study days 1 (single dose) and 14 (multiple dose), and efavirenz concentrations were analyzed by liquid chromatography-tandem mass spectrometry. Expression of P glycoprotein (P-gp) and of the multidrug resistance-associated proteins 1 and 2 as well as P-gp activity was analyzed in PBMCs on day 1 and day 14 using real-time reverse transcription-PCR (RT-PCR) and rhodamine 123 efflux. Although a clear autoinduction could be confirmed by a significant decrease of efavirenz exposure from day 1 to day 14, efavirenz did not change expression of the ABC transporters or P-gp activity in PBMCs. Moreover, intracellular concentrations of efavirenz were 1.3- to 1.8-fold higher than the corresponding plasma concentrations, and the intracellular/plasma concentration ratio remained constant during the treatment and did not correlate with ABC transporter expression or function. In conclusion, our study confirmed that intracellular concentrations of efavirenz are independent from these efflux transporters and demonstrated for the first time that the transporters are not induced in PBMCs in vivo after 2 weeks of treatment with efavirenz.


2021 ◽  
Vol 12 ◽  
Author(s):  
Amedeo De Nicolò ◽  
Michele Pinon ◽  
Alice Palermiti ◽  
Antonello Nonnato ◽  
Alessandra Manca ◽  
...  

Tacrolimus (TAC) is a first-choice immunosuppressant for solid organ transplantation, characterized by high potential for drug-drug interactions, significant inter- and intra-patient variability, and narrow therapeutic index. Therapeutic drug monitoring (TDM) of TAC concentrations in whole blood (WB) is capable of reducing the incidence of adverse events. Since TAC acts within lymphocytes, its monitoring in peripheral blood mononuclear cells (PBMC) may represent a valid future alternative for TDM. Nevertheless, TAC intracellular concentrations and their variability are poorly described, particularly in the pediatric context. Therefore, our aim was describing TAC concentrations in WB and PBMC and their variability in a cohort of pediatric patients undergoing constant immunosuppressive maintenance therapy, after liver transplantation. TAC intra-PBMCs quantification was performed through a validated UHPLC–MS/MS assay over a period of 2–3 months. There were 27 patients included in this study. No significant TAC changes in intracellular concentrations were observed (p = 0.710), with a median percent change of −0.1% (IQR −22.4%–+46.9%) between timings: this intra-individual variability was similar to the one in WB, −2.9% (IQR −29.4–+42.1; p = 0.902). Among different patients, TAC weight-adjusted dose and age appeared to be significant predictors of TAC concentrations in WB and PBMC. Intra-individual seasonal variation of TAC concentrations in WB, but not in PBMC, have been observed. These data show that the intra-individual variability in TAC intracellular exposure is comparable to the one observed in WB. This opens the way for further studies aiming at the identification of therapeutic ranges for TAC intra-PBMC concentrations.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 814
Author(s):  
Magdalena Keller ◽  
Elisa Manzocchi ◽  
Deborah Rentsch ◽  
Rosamaria Lugarà ◽  
Katrin Giller

Oxidative stress and inflammatory diseases are closely related processes that need to be controlled to ensure the desirable high performance of livestock. The microalga spirulina has shown antioxidant and anti-inflammatory properties in monogastric species. To investigate potential beneficial effects in ruminants, we replaced soybean meal (SOY) in the diets of dairy cows and fattening bulls by spirulina (SPI) and analyzed plasma concentrations of antioxidants (β-carotene, α-tocopherol, polyphenols) and serum total antioxidant capacity. Following in vitro stimulation with lipopolysaccharide (LPS), peripheral blood mononuclear cells (PBMCs) were isolated for expression analysis of inflammation- and antioxidant-defense-related genes. Plasma β-carotene concentration was higher in SPI, compared to SOY cows, but did not differ in bulls. Plasma total phenol concentration was significantly higher in SPI, compared to SOY bulls, but not in cows. Stimulation of bovine PBMCs with LPS increased the expression of most cytokines and some antioxidant enzymes. Gene expression of PBMCs derived from SPI animals, compared to SOY animals, hardly differed. Our results indicate that in ruminants, spirulina might not have potent antioxidant and anti-inflammatory properties. Future studies should evaluate the microbial degradation of spirulina and its bioactive compounds in the rumen to provide further data on potential beneficial health effects in ruminants.


Sign in / Sign up

Export Citation Format

Share Document