scholarly journals Scanning electron microscopy approach to observe bacterial adhesion to dental surfaces

MethodsX ◽  
2020 ◽  
Vol 7 ◽  
pp. 101107
Author(s):  
Rym Kammoun ◽  
Tarek Zmantar ◽  
Sonia Ghoul
2012 ◽  
Vol 535-537 ◽  
pp. 992-995
Author(s):  
Kun Mediaswanti ◽  
Vi Khanh Truong ◽  
Jafar Hasan ◽  
Elena P. Ivanova ◽  
Francois Malherbe ◽  
...  

Titanium and titanium alloys have been widely employed in many load-bearing orthopaedic applications due to their excellent strength and corrosion resistance. However, postimplantation infections might occur even though considerable studies have been made. Choosing a bio-friendly alloying element is one way to reduce infection risk. The aim of this study is to evaluate the extent of bacterial attachment on titanium, tantalum, niobium and tin surfaces. Two pathogenic bacterial strains, namely Staphylococcus aureus CIP 65.8T and Pseudomonas aeruginosa ATCC 9027, were used in this study. Quantification of bacterial attachment was performed using scanning electron microscopy. Results indicated that the surface chemistry and topography of the investigated materials significantly influence the degree of P. aeruginosa and S. aureus adhesion; however, surface wettability did not show a significant impact upon bacterial retention. In this study, tin was shown to be the most attractive material for bacteria adhesion but tantalum limits the bacterial adhesion. Therefore, it is suggested to limit the amount of tin as an titanium alloying element due to its nature to attract P. aeruginosa and S. aureus adhesion.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Lucas Pereira Borges ◽  
Julio Cesar Campos Ferreira-Filho ◽  
Julia Medeiros Martins ◽  
Caroline Vieira Alves ◽  
Bianca Marques Santiago ◽  
...  

The purpose of this work was to verifyin vitroadherence ofE. corrodensandS. oralisto the surface of tongue piercings made of surgical steel, titanium, Bioplast, and Teflon. For this, 160 piercings were used for the count of Colony Forming Units (CFU) and 32 piercings for analysis under scanning electron microscopy. Of these, 96 (24 of each type) were individually incubated in 5 mL of BHI broth and 50 μL of inoculum at 37°C/24 h. The other 96 piercings formed the control group and were individually incubated in 5 mL of BHI broth at 37°C/24 h. Plates were incubated at 37°C/48 h for counting of CFU/mL and data were submitted to statistical analysis (pvalue<0.05). ForE. corrodens, difference among types of material was observed (p<0.001) and titanium and surgical steel showed lower bacterial adherence. The adherence ofS. oralisdiffered among piercings, showing lower colonization (p<0.007) in titanium and surgical steel piercings. The four types of piercings were susceptible to colonization byE. corrodensandS. oralis, and bacterial adhesion was more significant in those made of Bioplast and Teflon. The piercings presented bacterial colonies on their surface, being higher in plastic piercings probably due to their uneven and rough surface.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Lucas Costa de Medeiros Dantas ◽  
João Paulo da Silva-Neto ◽  
Talita Souza Dantas ◽  
Lucas Zago Naves ◽  
Flávio Domingues das Neves ◽  
...  

This study sought to assess the effect of different surface finishing and polishing protocols on the surface roughness and bacterial adhesion (S. sanguinis) to polymethyl methacrylates (PMMA). Fifty specimens were divided into 5 groups (n=10) according to their fabrication method and surface finishing protocol: LP (3 : 1 ratio and laboratory polishing), NF (Nealon technique and finishing), NP (Nealon technique and manual polishing), MF (3 : 1 ratio and manual finishing), and MP (3 : 1 ratio and manual polishing). For each group, five specimens were submitted to bacterial adhesion tests and analyzed by scanning electron microscopy (SEM). Two additional specimens were subjected to surface topography analysis by SEM and the remaining three specimens were subjected to surface roughness measurements. Data were compared by one-way ANOVA. The mean bacterial counts were as follows: NF,19.6±3.05; MP,5.36±2.08; NP,4.96±1.93; MF,7.36±2.45; and LP,1.56±0.62(CFU). The mean surface roughness values were as follows: NF,3.23±0.15; MP,0.52±0.05; NP,0.60±0.08; MF,2.69±0.12; and LP,0.07±0.02(μm). A reduction in the surface roughness was observed to be directly related to a decrease in bacterial adhesion. It was verified that the laboratory processing of PMMA might decrease the surface roughness and consequently the adhesion ofS. sanguinisto this material.


1992 ◽  
Vol 38 (7) ◽  
pp. 676-686 ◽  
Author(s):  
James R. Rosowski

The association in soil–water cultures of bacteria with the siliceous wall (frustule) of Navicula confervacea was examined with scanning electron microscopy. This diatom is filamentous through serial valve–face unions. Thus, the valve mantle and girdle bands are exposed to the aqueous environment and its bacterial flora, whereas the internally isolated adhering valve–face surfaces are not. Secretion of diatom mucilage strands occurred largely from parallel slits in the valve mantle and from valve–band and band–band sutures. These strands appeared to create a surface environment that discouraged bacterial adhesion. However, as the diatoms divided, their newly exposed mucilage-free bands provided a substratum for bacterial attachment. Dense aggregates of bacteria sometimes occurred at frustule apices, where filaments most easily bend and where recently formed adjacent hypovalves emerge. Along mucilage-free segments of the diatom filament, bacterial development occasionally engulfed the frustules; more commonly, bacteria were sparse but in specific locations. Bacterial attachment structures were mostly straight fibers, even on cocci, whereas strands from diatoms were contorted. Attachment by rods and spirilla was most often by their apices, with or without obvious lateral anchoring fibers. Scanning electron microscopy of cocci, rods, vibrio, and spirilla suggests that these bacteria initially prefer mucilage-free attachment sites near openings likely to leak cellular nutrients, i.e., slits of the mantle and band sutures rather than on the substratum between them, where presumably, other nutrients would have been available through their adsorption from the medium. Key words: bacterial adhesion, diatom girdle, mucilage, trail fibers.


2017 ◽  
Vol 899 ◽  
pp. 237-242
Author(s):  
Ana Lucia do Amaral Escada ◽  
Cristiane Aparecida Pereira ◽  
Antonio Olavo Cardoso Jorge ◽  
Ana Paula Rosifini Alves Claro

In the present work, the efficacy of the Ti–7.5Mo alloy nanotube and Ti–7.5Mo alloy nanotube with chlorhexidine against bacterial biofilm formation was evaluated. Nanotubes were processed using anodization in 0.25% NH4F electrolyte solution. Biofilms were cultured in discs immersed in sterile brain heart infusion broth (BHI) containing 5% sucrose, inoculated with microbial suspension (106 cells/ml) and incubated for 5 days. Next, the discs were placed in tubes with sterile physiological solution 0.9% sodium chloride (NaCl) and sonicated to disperse the biofilms. Tenfold serial dilutions were carried and aliquots seeded in selective agar, which were then incubated for 48 h. Then, the numbers CFU/ml (log 10) were counted and analyzed statistically. Scanning electron microscopy (SEM) on discs with biofilms groups and contact angle was carried out. The results show that there is no difference in bacterial adhesion between of the Ti–7.5Mo alloy nanotube and Ti–7.5Mo alloy nanotube with chlorhexidine.


Sign in / Sign up

Export Citation Format

Share Document