scholarly journals In VitroAdherence of Oral Bacteria to Different Types of Tongue Piercings

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Lucas Pereira Borges ◽  
Julio Cesar Campos Ferreira-Filho ◽  
Julia Medeiros Martins ◽  
Caroline Vieira Alves ◽  
Bianca Marques Santiago ◽  
...  

The purpose of this work was to verifyin vitroadherence ofE. corrodensandS. oralisto the surface of tongue piercings made of surgical steel, titanium, Bioplast, and Teflon. For this, 160 piercings were used for the count of Colony Forming Units (CFU) and 32 piercings for analysis under scanning electron microscopy. Of these, 96 (24 of each type) were individually incubated in 5 mL of BHI broth and 50 μL of inoculum at 37°C/24 h. The other 96 piercings formed the control group and were individually incubated in 5 mL of BHI broth at 37°C/24 h. Plates were incubated at 37°C/48 h for counting of CFU/mL and data were submitted to statistical analysis (pvalue<0.05). ForE. corrodens, difference among types of material was observed (p<0.001) and titanium and surgical steel showed lower bacterial adherence. The adherence ofS. oralisdiffered among piercings, showing lower colonization (p<0.007) in titanium and surgical steel piercings. The four types of piercings were susceptible to colonization byE. corrodensandS. oralis, and bacterial adhesion was more significant in those made of Bioplast and Teflon. The piercings presented bacterial colonies on their surface, being higher in plastic piercings probably due to their uneven and rough surface.

1981 ◽  
Vol 59 (5) ◽  
pp. 683-688 ◽  
Author(s):  
R. W. Rose Jr. ◽  
C. Gerald Van Dyke ◽  
C. B. Davey

Three different types of ectomycorrhizae found in the Southeastern United States on Eucalyptus nova-anglica and identified as being formed by Cenococcum geophilum, Pisolithus tinctorius, and Scleroderma geaster were examined with a scanning electron microscope (SEM). In overall appearance the three types of mycorrhizae could be distinguished easily from each other, particularly C. geophilum, which had a relatively smooth, undulate surface in comparison with the other two types. Detailed descriptions and comparisons of these ectomycorrhizae are given and the value of SEM in characterizing ectomycorrhizae is discussed


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 267
Author(s):  
Phat L. Tran ◽  
Keaton Luth ◽  
James Wang ◽  
Coby Ray ◽  
Anselm de Souza ◽  
...  

Background:It is necessary to develop new strategies to protect against bacteria such as Streptococcus mutans, Streptococcus sanguis, andStreptococcus salivarius, which contribute to tooth decay and plaque formation. Our current study investigated the efficacy of a colloidal silver gel in inhibiting biofilm formation by these principal oral bacteria, in vitro. The aim of this study was to assess the efficacy of a colloidal silver gel formulation for inhibiting bacterial biofilm formation (Ag-gel) by the principal bacteria that cause plaque formation and tooth decay.Methods:The effect of Ag-gel on viability ofS. mutans,S. sanguis,and S. salivariuswas assessed by quantifying their colony forming units (CFU) in presence or absence of the test gel. The effect of this formulation on biofilm-forming ability of these bacteria was studied through scanning electron microscopy.Results:Using the CFU assays, over 6 logs of inhibition (100%) were found forS. mutans,S. sanguis, andS. salivariusfor the Ag-gel-treated bacteria when compared with the control gel. In addition, the Ag-gel also inhibited biofilm formation by these three bacteria mixed together. These results were confirmed by scanning electron microscopy.Conclusions:The Ag-gel was effective in preventing biofilm formation byS. mutans, S. sanguis, and S. salivarius. This Ag-gel should be tested for the ability to block plaque formation in the mouth, through its use as a tooth paste.


Author(s):  
William J. Lamoreaux ◽  
David L. Smalley ◽  
Larry M. Baddour ◽  
Alfred P. Kraus

Infections associated with the use of intravascular devices have been documented and have been reported to be related to duration of catheter usage. Recently, Eaton et al. reported that Staphylococcus epidermidis may attach to silastic catheters used in continuous ambulatory peritoneal dialysis (CAPD) treatment. The following study presents findings using scanning electron microscopy (SEM) of S. epidermidis adherence to silastic catheters in an in vitro model. In addition, sections of polyvinyl chloride (PVC) dialysis bags were also evaluated by SEM.The S. epidermidis strain RP62A which had been obtained in a previous outbreak of coagulase-negative staphylococcal sepsis at local hospitals was used in these experiments. The strain produced surface slime on exposure to glucose, whereas a nonadherent variant RP62A-NA, which was also used in these studies, failed to produce slime. Strains were grown overnight on blood agar plates at 37°C, harvested from the surface and resuspended in sterile saline (0.85%), centrifuged (3,000 rpm for 10 minutes) and then washed twice in 0.1 M phosphate-buffered saline at pH 7.0. Organisms were resuspended at a concentration of ca. 106 CFU/ml in: a) sterile unused dianeal at 4.25% dextrose, b) sterile unused dianeal at 1.5% dextrose, c) sterile used dialysate previously containing 4.25% dextrose taken from a CAPD patient, and d) sterile used dialysate previously containing 1.5% dextrose taken from a CAPD patient.


Author(s):  
J. R. Millette ◽  
R. S. Brown

The United States Environmental Protection Agency (EPA) has labeled as “friable” those building materials that are likely to readily release fibers. Friable materials when dry, can easily be crumbled, pulverized, or reduced to powder using hand pressure. Other asbestos containing building materials (ACBM) where the asbestos fibers are in a matrix of cement or bituminous or resinous binders are considered non-friable. However, when subjected to sanding, grinding, cutting or other forms of abrasion, these non-friable materials are to be treated as friable asbestos material. There has been a hypothesis that all raw asbestos fibers are encapsulated in solvents and binders and are not released as individual fibers if the material is cut or abraded. Examination of a number of different types of non-friable materials under the SEM show that after cutting or abrasion, tuffs or bundles of fibers are evident on the surfaces of the materials. When these tuffs or bundles are examined, they are shown to contain asbestos fibers which are free from binder material. These free fibers may be released into the air upon further cutting or abrasion.


1984 ◽  
Vol 52 (02) ◽  
pp. 102-104 ◽  
Author(s):  
L J Nicholson ◽  
J M F Clarke ◽  
R M Pittilo ◽  
S J Machin ◽  
N Woolf

SummaryA technique for harvesting mesothelial cells is described. This entails collagenase digestion of omentum after which the cells can be cultured. The technique has been developed using the rat, but has also been successfully applied to human tissue. Cultured rat mesothelial cells obtained in this way have been examined by scanning electron microscopy. Rat mesothelial cells grown on plastic film have been exposed to blood in an in vitro system using a Baumgartner chamber and have been demonstrated to support blood flow. No adhering platelets were observed on the mesothelial cell surface. Fibroblasts similarily exposed to blood as a control were washed off the plastic.


2017 ◽  
Vol 68 (6) ◽  
pp. 1188-1192
Author(s):  
Daniela Avram ◽  
Nicolae Angelescu ◽  
Dan Nicolae Ungureanu ◽  
Ionica Ionita ◽  
Iulian Bancuta ◽  
...  

The study in vitro of the glass powders bioactivity was performed by soaking them in simulated body fluid for 3 to 21 days at a temperature of 37�C and pH = 7.20. The synthesis de novo of hydroxyapatite, post soaking was confirmed by Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The study of the antimicrobial activity was performed by microbiological examination on two strains of pathogenic bacteria involved in postoperative nosocomial infections.


2021 ◽  
Vol 22 (11) ◽  
pp. 5730
Author(s):  
Jomarien García-Couce ◽  
Marioly Vernhes ◽  
Nancy Bada ◽  
Lissette Agüero ◽  
Oscar Valdés ◽  
...  

Hydrogels obtained from combining different polymers are an interesting strategy for developing controlled release system platforms and tissue engineering scaffolds. In this study, the applicability of sodium alginate-g-(QCL-co-HEMA) hydrogels for these biomedical applications was evaluated. Hydrogels were synthesized by free-radical polymerization using a different concentration of the components. The hydrogels were characterized by Fourier transform-infrared spectroscopy, scanning electron microscopy, and a swelling degree. Betamethasone release as well as the in vitro cytocompatibility with chondrocytes and fibroblast cells were also evaluated. Scanning electron microscopy confirmed the porous surface morphology of the hydrogels in all cases. The swelling percent was determined at a different pH and was observed to be pH-sensitive. The controlled release behavior of betamethasone from the matrices was investigated in PBS media (pH = 7.4) and the drug was released in a controlled manner for up to 8 h. Human chondrocytes and fibroblasts were cultured on the hydrogels. The MTS assay showed that almost all hydrogels are cytocompatibles and an increase of proliferation in both cell types after one week of incubation was observed by the Live/Dead® assay. These results demonstrate that these hydrogels are attractive materials for pharmaceutical and biomedical applications due to their characteristics, their release kinetics, and biocompatibility.


Microscopy ◽  
2017 ◽  
Vol 66 (6) ◽  
pp. 414-423
Author(s):  
Monalisa Mishra ◽  
Ashutosh Choudhury ◽  
P Sagar Achary ◽  
Harekrushna Sahoo

Abstract Butterflies wings possess different types of scales to perform diverse functions. Each scale has many nano and microstructures, which interferes with light, resulting in unique coloration for each butterfly. Besides coloration, the arrangement of scales further helps in giving better survivability. Thus, analysis of wing pattern provides an overall idea about adaptation and activity of the animal. The current study deciphers the structure and composition of a wing of a pierid butterfly Catopsilia pomona, which remains active at 42°C at which temperature all other butterflies face a tougher task for existence. In order to know the relation between survivability and adaptation in the wing, we have investigated the structural and physical composition of the wing of C. pomona under optical spectroscopy (absorption, reflectance and transmittance) along with microscopy techniques (optical and scanning electron microscopy), which are not described in earlier studies. The current findings reveal unique structural arrangement within scales to provide the best fit to the animal in variable temperature.


Sign in / Sign up

Export Citation Format

Share Document