scholarly journals Modulating host immune responses to fight invasive fungal infections

2017 ◽  
Vol 40 ◽  
pp. 95-103 ◽  
Author(s):  
James E Scriven ◽  
Mark W Tenforde ◽  
Stuart M Levitz ◽  
Joseph N Jarvis
2002 ◽  
Vol 15 (3) ◽  
pp. 465-484 ◽  
Author(s):  
Siew Fah Yeo ◽  
Brian Wong

SUMMARY The incidence of invasive fungal infections has increased dramatically in recent decades, especially among immunocompromised patients. However, the diagnosis of these infections in a timely fashion is often very difficult. Conventional microbiologic and histopathologic approaches generally are neither sensitive nor specific, and they often do not detect invasive fungal infection until late in the course of disease. Since early diagnosis may guide appropriate treatment and prevent mortality, there has been considerable interest in developing nonculture approaches to diagnosing fungal infections. These approaches include detection of specific host immune responses to fungal antigens, detection of specific macromolecular antigens using immunologic reagents, amplification and detection of specific fungal nucleic acid sequences, and detection and quantitation of specific fungal metabolite products. This work reviews the current status and recent developments as well as problems in the design of nonculture diagnostic methods for invasive fungal infections.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 243 ◽  
Author(s):  
Gregory M. Constantine ◽  
Michail S. Lionakis

The immune system is central to our interactions with the world in which we live and importantly dictates our response to potential allergens, toxins, and pathogens to which we are constantly exposed. Understanding the mechanisms that underlie protective host immune responses against microbial pathogens is vital for the development of improved treatment and vaccination strategies against infections. To that end, inherited immunodeficiencies that manifest with susceptibility to bacterial, viral, and/or fungal infections have provided fundamental insights into the indispensable contribution of key immune pathways in host defense against various pathogens. In this mini-review, we summarize the findings from a series of recent publications in which inherited immunodeficiencies have helped illuminate the interplay of human immunity and resistance to infection.


Author(s):  
Marta Dąbrowska ◽  
Monika Sienkiewicz ◽  
Paweł Kwiatkowski ◽  
Michał Dąbrowski

<p>Candida albicans is the most common cause of fungal infections worldwide. Invasive candidiasis comprises candidemia and deep-seated candidiasis. Most yeast invasive infections are endogenous with a high mortality. Pathogenesis of candidiasis depends on avoiding host immune responses, as well as the virulence factors of the fungus enabling colonization and invasion of tissues. Adequate source control and antifungal therapy administered within a short time is critical to get a better prognosis. The emergence of drug resistance and the side effects of currently available antifungals are becoming the major problem in the management of Candida spp. infection.</p>


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Karina Vega ◽  
Markus Kalkum

The human immune system is capable of recognizing and degrading chitin, an important cell wall component of pathogenic fungi. In the context of host-immune responses to fungal infections, herein we review the particular contributions and interplay of fungus and chitin recognition, and chitin-degrading enzymes, known as chitinases. The mechanisms of host chitinase responses may have implications for diagnostic assays as well as novel therapeutic approaches for patients that are at risk of contracting fatal fungal infections.


2018 ◽  
Vol 4 (4) ◽  
pp. 125 ◽  
Author(s):  
Patrícia Canteri de Souza ◽  
Carla Custódio Caloni ◽  
Duncan Wilson ◽  
Ricardo Sergio Almeida

Faced with ethical conflict and social pressure, researchers have increasingly chosen to use alternative models over vertebrates in their research. Since the innate immune system is evolutionarily conserved in insects, the use of these animals in research is gaining ground. This review discusses Tenebrio molitor as a potential model host for the study of pathogenic fungi. Larvae of T. molitor are known as cereal pests and, in addition, are widely used as animal and human feed. A number of studies on mechanisms of the humoral system, especially in the synthesis of antimicrobial peptides, which have similar characteristics to vertebrates, have been performed. These studies demonstrate the potential of T. molitor larvae as a model host that can be used to study fungal virulence, mycotoxin effects, host immune responses to fungal infection, and the action of antifungal compounds.


Sign in / Sign up

Export Citation Format

Share Document