Trueperella pyogenes isolated from dairy cows with endometritis in Inner Mongolia, China: Tetracycline susceptibility and tetracycline-resistance gene distribution

2017 ◽  
Vol 105 ◽  
pp. 51-56 ◽  
Author(s):  
Dexian Zhang ◽  
Jingcui Zhao ◽  
Qiuxia Wang ◽  
Yaochuan Liu ◽  
Chunlian Tian ◽  
...  
2003 ◽  
Vol 47 (4) ◽  
pp. 1430-1432 ◽  
Author(s):  
M. L. Diaz-Torres ◽  
R. McNab ◽  
D. A. Spratt ◽  
A. Villedieu ◽  
N. Hunt ◽  
...  

ABSTRACT A major drawback of most studies on how bacteria become resistant to antibiotics is that they concentrate mainly on bacteria that can be cultivated in the laboratory. In the present study, we cloned part of the oral metagenome and isolated a novel tetracycline resistance gene, tet(37), which inactivates tetracycline.


2000 ◽  
Vol 44 (3) ◽  
pp. 775-777 ◽  
Author(s):  
Karen P. Scott ◽  
Claire M. Melville ◽  
Teresa M. Barbosa ◽  
Harry J. Flint

ABSTRACT Members of our group recently identified a new tetracycline resistance gene, tet(W), in three genera of rumen obligate anaerobes. Here, we show that tet(W) is also present in bacteria isolated from human feces. The tet(W) genes found in human Fusobacterium prausnitzii andBifidobacterium longum isolates were more than 99.9% identical to those from a rumen isolate of Butyrivibrio fibrisolvens.


2015 ◽  
Vol 81 (16) ◽  
pp. 5560-5566 ◽  
Author(s):  
Seung Won Shin ◽  
Min Kyoung Shin ◽  
Myunghwan Jung ◽  
Kuastros Mekonnen Belaynehe ◽  
Han Sang Yoo

ABSTRACTThe aim of this study was to investigate the prevalence and transferability of resistance in tetracycline-resistantEscherichia coliisolates recovered from beef cattle in South Korea. A total of 155E. coliisolates were collected from feces in South Korea, and 146 were confirmed to be resistant to tetracycline. The tetracycline resistance genetet(A) (46.5%) was the most prevalent, followed bytet(B) (45.1%) andtet(C) (5.8%). Strains carryingtet(A) plustet(B) andtet(B) plustet(C) were detected in two isolates each. In terms of phylogenetic grouping, 101 (65.2%) isolates were classified as phylogenetic group B1, followed in decreasing order by D (17.4%), A (14.2%), and B2 (3.2%). Ninety-one (62.3%) isolates were determined to be multidrug resistant by the disk diffusion method. MIC testing using the principal tetracyclines, namely, tetracycline, chlortetracycline, oxytetracycline, doxycycline, and minocycline, revealed that isolates carryingtet(B) had higher MIC values than isolates carryingtet(A). Conjugation assays showed that 121 (82.9%) isolates could transfer a tetracycline resistance gene to a recipient via the IncFIB replicon (65.1%). This study suggests that the high prevalence of tetracycline-resistantE. coliisolates in beef cattle is due to the transferability of tetracycline resistance genes betweenE. colipopulations which have survived the selective pressure caused by the use of antimicrobial agents.


2010 ◽  
Vol 56 (9) ◽  
pp. 761-770 ◽  
Author(s):  
Hua Yang ◽  
Oleksandr A. Byelashov ◽  
Ifigenia Geornaras ◽  
Lawrence D. Goodridge ◽  
Kendra K. Nightingale ◽  
...  

This study examined the presence of antibiotic-resistant commensal bacteria among cattle operations representing areas heavily affected by agriculture, city locations representing areas affected by urban activities and indirectly affected by agriculture, and a national park representing an area not affected by agriculture. A total of 288 soil, fecal floor, and water samples were collected from cattle operations, from the city of Fort Collins, and from Rocky Mountain National Park (RMNP) in Colorado. In addition, a total of 42 new and unused feed, unused bedding, compost, and manure samples were obtained from the cattle operations. Total, tetracycline-resistant, and ceftiofur-resistant bacterial populations were enumerated by both standard culture plating and real-time PCR methods. Only wastewater samples from the cattle operations demonstrated both higher tetracycline-resistant bacterial counts (enumerated by the culture plating method) and tetracycline resistance gene copies (quantified by real-time PCR) compared to water samples collected from non-farm environments. The ceftiofur resistance gene, blaCMY-2, was not detectable in any of the samples, while the tetracycline resistance genes examined in this study, tet(B), tet(C), tet(W), and tet(O), were detected in all types of tested samples, except soil samples from RMNP. Tetracycline resistance gene pools quantified from the tet(O) and tet(W) genes were bigger than those from the tet(B) and tet(C) genes in fecal and water samples. Although only limited resistance genes, instead of a full set, were selected for real-time PCR quantification in this study, our results point to the need for further studies to determine natural and urban impacts on antibiotic resistance.


Sign in / Sign up

Export Citation Format

Share Document