Molecular characterization and phylogenetic analysis of highly pathogenic Vibrio alginolyticus strains isolated during mortality outbreaks in cultured Ruditapes decussatus juvenile

2017 ◽  
Vol 111 ◽  
pp. 487-496 ◽  
Author(s):  
Badreddine Mechri ◽  
Abir Monastiri ◽  
Amel Medhioub ◽  
Mohamed Nejib Medhioub ◽  
Mahjoub Aouni

2014 ◽  
Vol 23 (4) ◽  
pp. 1033-1047 ◽  
Author(s):  
Badreddine Mechri ◽  
Imen Ben Salem ◽  
Amel Medhioub ◽  
Mohamed Nejib Medhioub ◽  
Mahjoub Aouni


2020 ◽  
Vol 141 ◽  
pp. 39-46
Author(s):  
MD Dorjievna Batueva ◽  
X Pan ◽  
J Zhang ◽  
X Liu ◽  
W Wei ◽  
...  

In the present study, we provide supplementary data for Myxidium cf. rhodei Léger, 1905 based on morphological, histological and molecular characterization. M. cf. rhodei was observed in the kidneys of 918 out of 942 (97%) roach Rutilus rutilus (Linnaeus, 1758). Myxospores of M. cf. rhodei were fusiform with pointed ends, measuring 12.7 ± 0.1 SD (11.8-13.4) µm in length and 4.6 ± 0.1 (3.8-5.4) µm in width. Two similar pear-shaped polar capsules were positioned at either ends of the longitudinal axis of the myxospore: each of these capsules measured 4.0 ± 0.1 (3.1-4.7) µm in length and 2.8 ± 0.1 (2.0-4.0) µm in width. Polar filaments were coiled into 4 to 5 turns. Approximately 18-20 longitudinal straight ridges were observed on the myxospore surface. The suture line was straight and distinctive, running near the middle of the valves. Histologically, the plasmodia of the present species were found in the Bowman’s capsules, and rarely in the interstitium of the host. Phylogenetic analysis revealed that M. cf. rhodei was sister to M. anatidum in the Myxidium clade including most Myxidium species from freshwater hosts.



Author(s):  
Hussein Sabit ◽  
Shaimaa Abdel-Ghany ◽  
Zamzam Al-Dhafar ◽  
Osama A. Said ◽  
Jawad Ali Al-Saeed ◽  
...  


Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1389 ◽  
Author(s):  
Sol Jeong ◽  
Dong-Hun Lee ◽  
Jung-Hoon Kwon ◽  
Yu-Jin Kim ◽  
Sun-Hak Lee ◽  
...  

In October 2020, a highly pathogenic avian influenza (HPAI) subtype H5N8 virus was identified from a fecal sample of a wild mandarin duck (Aix galericulata) in South Korea. We sequenced all eight genome segments of the virus, designated as A/Mandarin duck/Korea/K20-551-4/2020(H5N8), and conducted genetic characterization and comparative phylogenetic analysis to track its origin. Genome sequencing and phylogenetic analysis show that the hemagglutinin gene belongs to H5 clade 2.3.4.4 subgroup B. All genes share high levels of nucleotide identity with H5N8 HPAI viruses identified from Europe during early 2020. Enhanced active surveillance in wild and domestic birds is needed to monitor the introduction and spread of HPAI via wild birds and to inform the design of improved prevention and control strategies.



2010 ◽  
Vol 439-440 ◽  
pp. 1456-1462 ◽  
Author(s):  
Jiang Zheng ◽  
Yu Bao Li ◽  
Jia Xiang Li ◽  
Jun Wang ◽  
Yong Quan Su

Detection of pathogenic microorganism is very necessary in the control of infectious disease prevailing in aquiculture animals. However, most of the present techniques can not meet the need of the quick field inspection. Systematic evolution of ligands by exponential enrichment (SELEX) is a new molecular recognition way for generating high affinity oligonucleotide acid aptamers, a new nucleotide acid material, which have been widely used in the detections of proteins, cells and so on. In the present paper, the technology was applied to select the high affinity aptamers against pathogenic microorganism Vibrio alginolyticus, which could be used for the rapid field detection of the microorganism. Based on the designment of the ssDNA library of 76 nucleotide acids with 35-base random region, the SELEX system for the selection of the high affinity aptamers against Vibrio alginolyticus was established. In the SELEX system, asymmetric PCR was proved to be a better amplification method for the ssDNA library than the reported affinity magnetic bead method, and the corresponding parameters of the asymmetric PCR were also studied and optimized. The affinity of the final ssDNA library increased by nearly 200% compared with the original library. Cloning and sequencing of the final ssDNA library showed that there were at least two kinds of ssDNAs with different length in the affinity ssDNA library: one was 76 bases, another was 149 bases. Simulation of the secondary structures showed that the secondary structures of the two fragments were different greatly, suggesting that the two fragments could bind to different sites of V. alginolyticus surface.





Author(s):  
C. Patidar ◽  
D.K. Sharma ◽  
R. Singathia ◽  
P. Suthar ◽  
A. Saraswat ◽  
...  

Background: Poultry enteritis is an important multifactorial disease. Chicken Astrovirus (CAstV) usually associated with enteritis. The aim of this study was to investigate the occurrence of CAstV in poultry enteritis cases, its molecular characterization, phylogenetic analysis and gross and microscopic examination of intestine and liver specimen affected with CAstV. Methods: Total 604 dead poultry birds from commercial poultry farms affected with enteritis were examined for presence of CAstV. Intestinal samples of four birds were pooled to make one biological sample. CAstV was detected by reverse transcriptase PCR (RT-PCR) using ORF-1b gene specific primers. Molecular characterization was carried out by partial gene sequencing. Result: CAstV was detected in 20.52% (31/151) of samples. Highest prevalence (49.29%) was observed in 0-1 week old chicks. The partial molecular characterization revealed high similarity of the nucleotide sequence from India (97% to 93%) and from USA, Brazil, Poland and Korea (94 to 92%). Further similarity of amino acid sequences of CAstV from India (100% to 98%) and from USA, Brazil, Poland and Korea (98 to 97%) was observed. Histopathological examination revealed villous atrophy, congestion and atrophic cystic glands in sub-mucosa of intestine. Further severe congestion and hemorrhages along with infiltration of inflammatory cells in liver parenchyma was observed.



PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258318
Author(s):  
Marta Antas ◽  
Monika Olech ◽  
Anna Szczotka-Bochniarz

Porcine epidemic diarrhoea (PED) is a highly contagious enteric viral disease of pigs with a high morbidity and mortality rate, which ultimately results in huge economic losses in the pig production sector. The etiological agent of this disease is the porcine epidemic diarrhoea virus (PEDV) which is an enveloped, positive single-stranded RNA virus. The aim of this study was to perform molecular characterization of PEDV to identify the strains circulating in Poland. In this study, 662 faecal samples from 2015 to 2021 were tested with reverse transcription quantitative real-time PCR (RT-qPCR) and the results showed that 3.8% of the tested samples revealed a positive result for PEDV. A phylogenetic analysis of the complete genome and complete S gene sequences showed that Polish PEDV strains belonged to the G1b (S-INDEL) subgroup and were closely related to the European PEDV strains isolated from 2014 to 2019. Furthermore, RDP4 analysis revealed that the Polish PEDV strains harboured a recombinant fragment of ~400 nt in the 5’ end of S gene with PEDV and swine enteric coronavirus (SeCoV) being the major and minor parents, respectively. Antigenic analysis showed that the aa sequences of neutralizing epitopes were conserved among the Polish PEDV strains. Only one strain, #0100/5P, had a unique substitution in the COE epitope. However, Polish PEDV strains showed several substitutions, especially in the COE antigen, as compared to the classical strain CV777. To the best of our knowledge, this is the first report concerning the molecular characterization of porcine epidemic diarrhoea virus strains, as well as the first phylogenetic analysis for PEDV in Poland.



Sign in / Sign up

Export Citation Format

Share Document