Green synthesized silver nanoparticles by marine endophytic fungus Penicillium polonicum and its antibacterial efficacy against biofilm forming, multidrug-resistant Acinetobacter baumanii

2018 ◽  
Vol 116 ◽  
pp. 263-272 ◽  
Author(s):  
Sahadevan Neethu ◽  
Sebastian Jose Midhun ◽  
E.K. Radhakrishnan ◽  
Mathew Jyothis
RSC Advances ◽  
2020 ◽  
Vol 10 (64) ◽  
pp. 38746-38754
Author(s):  
Wenxi Li ◽  
Yongchun Li ◽  
Pengchao Sun ◽  
Nan Zhang ◽  
Yidan Zhao ◽  
...  

Multifunctional peptides (MFP)-coated silver nanoparticles (MFP@AgNPs) enhanced the antibacterial activity of AgNPs against multidrug-resistant A. baumannii (MDB-AB) strains.


Biomolecules ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 662 ◽  
Author(s):  
Mickymaray

Globally, antimicrobial resistance has grown at an alarming rate. To combat the multidrug-resistant (MDR) superbugs, silver nanoparticles (Ag NPs) were synthesized using an aqueous leaf extract of seasonal desert plant Sisymbrium irio obtained from the central region of Saudi Arabia by a simple one-step procedure. The physical and chemical properties of the Ag NPs were investigated through ultraviolet visisble analysis (UV-vis), Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM) analysis. The UV-vis spectrum showed an absorption band at 426 nm. The XRD results showed a highly crystalline face-centered cubic structure. The surface morphology analyzed using SEM and TEM analyses showed the particle size to be in the range 24 nm to 50 nm. Various concentrations of Ag NPs were tested against MDR Pseudomonas aeruginosa and Acinetobacter baumanii that cause ventilator-associated pneumonia (VAP). American Type Culture Collection (ATCC) Escherichia coli-25922 was used as the reference control strain. The Ag NPs effectively inhibited tested pathogens, even at the lowest concentration (6.25 µg) used. The bacterial inhibitory zone ranged from 11–21 mm. In conclusion, the newly synthesized Ag NPs could be a potential alternative candidate in biomedical applications in controlling the spread of MDR pathogens.


Sign in / Sign up

Export Citation Format

Share Document