Strict relationship between class 1 integrons and resistance to sulfamethoxazole in Escherichia coli

2021 ◽  
pp. 105206
Author(s):  
Eliana de los Santos ◽  
Magela Laviña ◽  
Ma Eloísa Poey
2019 ◽  
Vol 183 ◽  
pp. 109514 ◽  
Author(s):  
Shaqiu Zhang ◽  
Hong Yang ◽  
Mujeeb Ur Rehman ◽  
Kema Yang ◽  
Mengyi Dong ◽  
...  

2018 ◽  
Vol 16 (5) ◽  
pp. 319-327
Author(s):  
Atchariya YOSBOONRUANG ◽  
Anong KIDDEE ◽  
Chatsuda BOONDUANG ◽  
Phannarai PIBALPAKDEE

Escherichia coli is a serious cause of a variety of hospital-acquired infections and commonly contributes to the environment by house flies. Integrons, particularly class 1 integrons, are the genetic elements that play an important role in the horizontal transfer of antimicrobial resistance mechanism. This mechanism is commonly found in Enterobacteriaceae, especially E. coli. In this study, we aim to investigate the occurrence and antimicrobial resistance patterns of E. coli isolated from the house flies in Phayao hospital and to determine the gene expression of class 1 integrons in those isolates of E. coli. Totally, 70 isolates of E. coli were isolated from 60 house flies collected from the hospital. Fifty-seven of the isolates (81.43 %) were multidrug resistance (MDR) and highly resistant to b-lactams, tetracyclines, and sulfonamides. Of 57 isolates of MDR-E. coli, 20 isolates (35 %) were found to carry class 1 integron genes. Fifteen patterns of antimicrobial resistance occurred in the isolates of integron-positive E. coli. Most integron-positive E. coli isolates were resistant to 7 antimicrobials. Two isolates of these bacteria (10 %) were able to resist 13 out of 14 tested antimicrobials. Using PCR and sequencing analysis, an investigation showed that dfrA17-aadA5, dfrA12-aadA2 gene cassette was the most prevalent cassette (n = 10; 50 %) among the integron-positive E. coli isolates. Our results indicated that the presences of multidrug resistance and class 1 integrons were common in E. coli isolated from the houseflies in hospital. Therefore, screening for integron-positive E. coli from the hospital environment might be necessary for prevention of nosocomial infections.


2017 ◽  
Vol 66 (5) ◽  
pp. 577-583 ◽  
Author(s):  
Clarisse Oliveira-Pinto ◽  
Cristiane Diamantino ◽  
Patrícia L Oliveira ◽  
Mariana P Reis ◽  
Patrícia S Costa ◽  
...  

2017 ◽  
Vol 3 (12) ◽  
Author(s):  
Cameron J. Reid ◽  
Ethan R. Wyrsch ◽  
Piklu Roy Chowdhury ◽  
Tiziana Zingali ◽  
Michael Liu ◽  
...  

2015 ◽  
Vol 78 (8) ◽  
pp. 1442-1450 ◽  
Author(s):  
KANJANA CHANGKAEW ◽  
APIRADEE INTARAPUK ◽  
FUANGFA UTRARACHKIJ ◽  
CHIE NAKAJIMA ◽  
ORASA SUTHIENKUL ◽  
...  

Administration of antimicrobials to food-producing animals increases the risk of higher antimicrobial resistance in the normal intestinal flora of these animals. The present cross-sectional study was conducted to investigate antimicrobial susceptibility and extended-spectrum β-lactamase (ESBL)–producing strains and to characterize class 1 integrons in Escherichia coli in healthy swine in Thailand. All 122 of the tested isolates had drug-resistant phenotypes. High resistance was found to ampicillin (98.4% of isolates), chloramphenicol (95.9%), gentamicin (78.7%), streptomycin (77.9%), tetracycline (74.6%), and cefotaxime (72.1%). Fifty-four (44.3%) of the E. coli isolates were confirmed as ESBL-producing strains. Among them, blaCTX-M (45 isolates) and blaTEM (41 isolates) were detected. Of the blaCTX-M-positive E. coli isolates, 37 carried the blaCTX-M-1 cluster, 12 carried the blaCTX-M-9 cluster, and 5 carried both clusters. Sequence analysis revealed blaTEM-1, blaTEM-135, and blaTEM-175 in 38, 2, and 1 isolate, respectively. Eighty-seven (71%) of the 122isolates carried class 1 integrons, and eight distinct drug-resistance gene cassettes with seven different integron profiles were identified in 43 of these isolates. Gene cassettes were associated with resistance to aminoglycosides (aadA1, aadA2, aadA22, or aadA23), trimethoprim (dfrA5, dfrA12, or dfrA17), and lincosamide (linF). Genes encoding β-lactamases were not found in class 1 integrons. This study is the first to report ESBL-producing E. coli with a class 1 integron carrying the linF gene cassette in swine in Thailand. Our findings confirm that swine can be a reservoir of ESBL-producing E. coli harboring class 1 integrons, which may become a potential health risk if these integrons are transmitted to humans. Intensive analyses of animal, human, and environmental isolates are needed to control the spread of ESBL-producing E. coli strains.


2012 ◽  
Vol 160 (3-4) ◽  
pp. 403-412 ◽  
Author(s):  
Christina Susanne Hölzel ◽  
Katrin Susanne Harms ◽  
Johann Bauer ◽  
Ilse Bauer-Unkauf ◽  
Stefan Hörmansdorfer ◽  
...  

2019 ◽  
Vol 82 (3) ◽  
pp. 470-478 ◽  
Author(s):  
HUI CHENG ◽  
HAN JIANG ◽  
JIEHONG FANG ◽  
CHENG ZHU

ABSTRACT Our study was conducted to investigate the antibiotic susceptibility profiles, integrons and their associated gene cassettes (GCs), and insertion sequence common regions of Escherichia coli isolates from Penaeus vannamei collected at a large-scale freshwater shrimp farm in Zhejiang Province, People's Republic of China. A total of 182 E. coli isolates were identified from 200 samples. With the exception of imipenem, isolates were most commonly resistant to β-lactams, followed by tetracylines and sulfonamides. Fifty-two (28.6%) E. coli isolates were classified as multidrug resistant, and the patterns were highly diverse, with 29 types represented. The multiple-antibiotic resistance indices of the isolates were 0.17 to 0.56; 9.3% (17) of the 182 isolates were positive for class 1 integrons, 0.5% (1 isolate) was positive for class 2 integrons, and an insertion sequence common region 1 element was found upstream of the intI1 (integrase) gene in one of the intI1-positive isolates. Four GC arrays were detected in class 1 integrons, and one GC array was detected in class 2 integrons. Although the overall prevalence of antimicrobial-resistant bacteria in P. vannamei was lower than that previously reported for poultry and livestock farms in China, concerns about the inappropriate use of antibiotics and the transmission of antimicrobial-resistant bacteria in aquaculture were raised. Alternative approaches to reducing or replacing the use of antibiotics should be further studied.


2008 ◽  
Vol 71 (8) ◽  
pp. 1679-1684 ◽  
Author(s):  
M. L. KHAITSA ◽  
J. OLOYA ◽  
D. DOETKOTT ◽  
R. KEGODE

The objective of this study was to quantify the role of class 1 integrons in antimicrobial resistance in Escherichia coli isolated from turkey meat products purchased from retail outlets in the Midwestern United States. Of 242 E. coli isolates, 41.3% (102 of 242) tested positive for class 1 integrons. A significant association was shown between presence of class 1 integrons in E. coli isolates and the resistance to tetracycline, ampicillin, streptomycin, gentamicin, sulfisoxazole, and trimethoprim-sulfamethoxazole. Attributable risk analysis revealed that for every 100 E. coli isolates carrying class 1 integrons, resistance was demonstrated for ampicillin (22%), gentamycin (48%), streptomycin (29%), sulfisoxazole (40%), trimethoprimsulfamethoxazole (7%), and tetracycline (26%). Non–integron-related antimicrobial resistance was demonstrated for ampicillin (65%), gentamycin (16.9%), streptomycin (42.1%), sulfisoxazole (35.8%), and tetracycline (49.7%). Population-attributable fraction analysis showed that class 1 integrons accounted for the following resistances: gentamycin, 71% (50 of 71), amoxicillin–clavulanic acid, 19.6% (6 of 33), nalidixic acid, 34% (7 of 21), streptomycin, 28% (30 of 107), sulfisoxazole, 38% (40 of 106), and tetracycline, 14%, (26 of 185). In conclusion, although class 1 integrons have been implicated in resistance to antimicrobial agents, other non–integron resistance mechanisms seem to play an important part.


Sign in / Sign up

Export Citation Format

Share Document