scholarly journals Differential control of the PcoI/PcoR quorum-sensing system in Pseudomonas fluorescens 2P24 by sigma factor RpoS and the GacS/GacA two-component regulatory system

2009 ◽  
Vol 164 (1) ◽  
pp. 18-26 ◽  
Author(s):  
Qing Yan ◽  
Xiao-Gang Wu ◽  
Hai-Lei Wei ◽  
Hui-Min Wang ◽  
Li-Qun Zhang
2003 ◽  
Vol 69 (3) ◽  
pp. 1739-1747 ◽  
Author(s):  
Claudio Aguilar ◽  
Iris Bertani ◽  
Vittorio Venturi

ABSTRACT Bacterial strains belonging to Burkholderia cepacia can be human opportunistic pathogens, plant pathogens, and plant growth promoting and have remarkable catabolic activity. B. cepacia consists of several genomovars comprising what is now known as the B. cepacia complex. Here we report the quorum-sensing system of a genomovar I onion rot type strain ATCC 25416. Quorum sensing is a cell-density-dependent regulatory response which involves the production of N-acyl homoserine lactone (HSL) signal molecules. The cep locus has been inactivated in the chromosome, and it has been shown that CepI is responsible for the biosynthesis of an N-hexanoyl HSL (C6-HSL) and an N-octanoyl HSL (C8-HSL) and that the cep locus regulates protease production as well as onion pathogenicity via the expression of a secreted polygalacturonase. A cep-lacZ-based sensor plasmid has been constructed and used to demonstrate that CepR responded to C6-HSL with only 15% of the molar efficiency of C8-HSL, that a cepR knockout mutant synthesized 70% less HSLs, and that CepR responded best towards long-chain HSLs. In addition, we also report the cloning and characterization of the stationary-phase sigma factor gene rpoS of B. cepacia ATCC 25416. It was established that quorum sensing in B. cepacia has a negative effect on rpoS expression as determined by using an rpoS-lacZ transcriptional fusion; on the other hand, rpoS-null mutants displayed no difference in the accumulation of HSL signal molecules.


Microbiology ◽  
2009 ◽  
Vol 155 (1) ◽  
pp. 124-133 ◽  
Author(s):  
Qing Yan ◽  
Wei Gao ◽  
Xiao-Gang Wu ◽  
Li-Qun Zhang

A quorum-sensing locus, pcoI/pcoR, which is involved in the regulation of root colonization and plant disease-suppressive ability, was previously identified in Pseudomonas fluorescens 2P24. In this study, we performed random mutagenesis using mini-Tn5 in order to screen the upstream transcriptional regulators of pcoI, a biosynthase gene responsible for the synthesis of N-acylhomoserine lactone signal molecules. Two mutants, PM400 and PM410, with elevated pcoI gene promoter activity, were identified from ∼10 000 insertion clones. The amino acid sequences of the interrupted genes in these two mutants were highly similar to PhoQ, a sensor protein of the two-component regulatory system PhoP/PhoQ, which responds to environmental Mg2+ starvation and regulates virulence in Salmonella typhimurium and antimicrobial peptide resistance in Pseudomonas aeruginosa. The promoter activity of pcoI was also induced under low-Mg2+ conditions in the 2P24 strain of P. fluorescens. Deletion mutagenesis and complementation experiments demonstrated that the transcription of pcoI was negatively regulated by the sensor PhoQ but positively regulated by the response regulator PhoP. Genetic evidence also indicated that transcription of the outer-membrane protein gene oprH was induced by Mg2+ starvation through regulation of the wild-type PhoP/PhoQ system. Additionally, PhoQ was involved in biofilm formation by 2P24 under low-Mg2+ conditions through a PhoP-independent pathway.


2020 ◽  
Author(s):  
Artemis Gogos ◽  
Michael J. Federle

AbstractStreptococcus pyogenes is a human-restricted pathogen most often found in the human nasopharynx. Multiple bacterial factors are known to contribute to persistent colonization of this niche, and many are important in mucosal immunity and vaccine development. In this work, mice were infected intranasally with transcriptional regulator mutants of the Rgg2/3 quorum sensing (QS) system—a peptide-based signaling system conserved in sequenced isolates of S. pyogenes. Deletion of the QS system’s transcriptional activator (Δrgg2) dramatically diminished the percentage of colonized mice while deletion of the transcriptional repressor (Δrgg3) increased the percentage of colonized mice compared to wild type. Stimulation of the QS system using synthetic pheromones prior to inoculation did not significantly increase the percentage of animals colonized, indicating that QS-dependent colonization is responsive to the intrinsic conditions within the host upper respiratory tract. Bacterial RNA extracted directly from oropharyngeal swabs and evaluated by quantitative RT-PCR subsequently confirmed QS upregulation within one hour of inoculation. In the nasal-associated lymphoid tissue (NALT), a muted inflammatory response to the Δrgg2 bacteria suggests that their rapid elimination failed to elicit the previously characterized response to intranasal inoculation of GAS. This work identifies a new transcriptional regulatory system governing the ability of S. pyogenes to colonize the nasopharynx and provides knowledge that could help lead to decolonization therapeutics.Author SummaryStreptococcus pyogenes is responsible for a wide spectrum of diseases ranging from common pharyngitis to infrequent invasive infections like necrotizing fasciitis. The ability of this microorganism to persist in the human oropharynx predisposes colonized individuals to a variety of superficial and invasive diseases which lead to significant morbidities and mortality. Identification of the regulatory systems that augment the bacteria’s ability to colonize the oropharynx provides potential targets against which molecular therapeutics can be designed. Here we show that the Rgg2/3 quorum sensing system, an interbacterial communication system, governs the ability of S. pyogenes to colonize the murine oropharynx. Disruption of the system’s transcriptional activator reduced colonization dramatically, eliminated the transcription of two sets of genes known to be activated by the Rgg2/3 system, and tempered the innate immune response seen when S. pyogenes is intranasally infected into the mouse.


2018 ◽  
Vol 55 (8) ◽  
pp. 3016-3025 ◽  
Author(s):  
Tingting Li ◽  
Bing Yang ◽  
Xuepeng Li ◽  
Jianrong Li ◽  
Guohua Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document