scholarly journals Shock wave plasma generation in low pressure ambient gas from powder sample using subtarget supported micro mesh as a sample holder and its potential applications for sensitive analysis of powder samples

2018 ◽  
Vol 142 ◽  
pp. 108-116 ◽  
Author(s):  
Javed Iqbal ◽  
Marincan Pardede ◽  
Eric Jobiliong ◽  
Rinda Hedwig ◽  
Muliadi Ramli ◽  
...  
1973 ◽  
Vol 59 (2) ◽  
pp. 391-396 ◽  
Author(s):  
N. C. Freeman ◽  
S. Kumar

It is shown that, for a spherically symmetric expansion of a gas into a low pressure, the shock wave with area change region discussed earlier (Freeman & Kumar 1972) can be further divided into two parts. For the Navier–Stokes equation, these are a region in which the asymptotic zero-pressure behaviour predicted by Ladyzhenskii is achieved followed further downstream by a transition to subsonic-type flow. The distance of this final region downstream is of order (pressure)−2/3 × (Reynolds number)−1/3.


Author(s):  
Qingjun Zhao ◽  
Fei Tang ◽  
Huishe Wang ◽  
Jianyi Du ◽  
Xiaolu Zhao ◽  
...  

In order to explore the influence of hot streak temperature ratio on low pressure stage of a Vaneless Counter-Rotating Turbine, three-dimensional multiblade row unsteady Navier-Stokes simulations have been performed. The predicted results show that hot streaks are not mixed out by the time they reach the exit of the high pressure turbine rotor. The separation of colder and hotter fluids is observed at the inlet of the low pressure turbine rotor. After making interactions with the inner-extending shock wave and outer-extending shock wave in the high pressure turbine rotor, the hotter fluid migrates towards the pressure surface of the low pressure turbine rotor, and the most of colder fluid migrates to the suction surface of the low pressure turbine rotor. The migrating characteristics of the hot streaks are predominated by the secondary flow in the low pressure turbine rotor. The effect of buoyancy on the hotter fluid is very weak in the low pressure turbine rotor. The results also indicate that the secondary flow intensifies in the low pressure turbine rotor when the hot streak temperature ratio is increased. The effects of the hot streak temperature ratio on the relative Mach number and the relative flow angle at the inlet of the low pressure turbine rotor are very remarkable. The isentropic efficiency of the Vaneless Counter-Rotating Turbine decreases as the hot streak temperature ratio is increased.


1989 ◽  
pp. 41-47
Author(s):  
James A. McAteer ◽  
Stephen A. Kempson ◽  
Sharon P. Andreoli ◽  
Richard Haak ◽  
Robert A. Harris ◽  
...  

2018 ◽  
Vol 96 (11) ◽  
pp. 1177-1187 ◽  
Author(s):  
Susinder Sundaram ◽  
Karthi Sellamuthu ◽  
Krishnaveni Nagavelu ◽  
Harikumar R Suma ◽  
Arpan Das ◽  
...  

2007 ◽  
Vol 344 ◽  
pp. 799-806 ◽  
Author(s):  
H. Schulze Niehoff ◽  
Zhen Yu Hu ◽  
Frank Vollertsen

Mechanical micro deep drawing becomes a more and more industrial relevant process. But due to size effects new challenges are involved in this process compared to macro deep drawing. The size effects cause an increase of friction and thus hinder the material flow. The change of friction in mechanical micro deep drawing is subject of the presented investigations in this paper. Additionally to this, a new non-mechanical micro deep drawing process is presented, whereby a laser beam acts as a punch. This new laser deep drawing process is based on a totally different mechanism compared to thermal laser forming, e.g. forming by laser induced thermal stresses: The laser produces a pulse with an extremely high power density, which causes plasma generation at the target and thus a shock wave. The shock wave can be used as in explosive forming, but is smaller and easier to generate. Recent investigations showed that using this technology laser deep drawing is possible with a sheet metal out of Al 99.5 and a thickness of 50 'm. The deep drawing process was carried out with a die diameter of 4 mm and shows promising results.


Sign in / Sign up

Export Citation Format

Share Document