Expanded titanosilicate MWW-related materials synthesized from a boron-containing precursor as an efficient catalyst for cyclohexene oxidation

Author(s):  
Zhimou Tang ◽  
Yunkai Yu ◽  
Zhen Chen ◽  
Dongxu Liu ◽  
Nan Fang ◽  
...  
2011 ◽  
Vol 236-238 ◽  
pp. 3046-3050
Author(s):  
Zhen Yu Cai ◽  
Ming Qiao Zhu ◽  
Yue Tang ◽  
Yi Liu ◽  
Huan Dai ◽  
...  

Carbon-supported gold catalysts Au/C were prepared by an impregnation-reduction method and modified by AgNO3to obtain bi-metallic catalysts Au-Ag/C, which were characterized by X-ray-diffraction (XRD) and Transmission Electron Microscope (TEM). Their catalytic performance was tested in the oxidation of cyclohexene in an autoclave without any solvent. The results showed that Ag doping can significantly enhance the catalytic performance of carbon-supported gold catalyst. Au(1.0 wt.%)-Ag(1.0 wt.%)/C has been found to be an efficient catalyst for the cyclohexene oxidation with a conversion of 27.6% at 80 °C and 0.4 MPa for 12 h while selectivity for ∑C6products (including cyclohexene oxide, 2-cyclohexene-1-ol, 2-cyclohexene-1-one and cyclohexane-1,2-diol) exceeding 88.9%, especially the selectivity of cyclohexane-1,2-diol up to 47.6%. Moreover, the effects of Au, Ag content on catalytic performance were also reported.


2017 ◽  
Vol 41 (20) ◽  
pp. 11619-11625 ◽  
Author(s):  
Xiaoqin Li ◽  
Dan Ma ◽  
Bingran Cao ◽  
Ying Lu

Two new mixed-metal clusters {CuM2(H2O)2[Cu(C14H16N2O3)Cl]6}·H2O (M = Mn 1, Zn 2) were synthesized and the properties of cyclohexene oxidation were investigated.


2015 ◽  
Vol 145 (8) ◽  
pp. 1529-1540 ◽  
Author(s):  
Mihaela Mureşeanu ◽  
Magda Puşcaşu ◽  
Simona Şomăcescu ◽  
Gabriela Cârjă

2018 ◽  
Vol 21 (8) ◽  
pp. 602-608 ◽  
Author(s):  
Zainab Ehsani-Nasab ◽  
Ali Ezabadi

Aim and Objective: In the present work, 1, 1’-sulfinyldiethylammonium bis (hydrogen sulfate) as a novel room temperature dicationic ionic liquid was synthesized and used as a catalyst for xanthenediones synthesis. Material and Method: The dicationic ionic liquid has been synthesized using ethylamine and thionyl chloride as precursors. Then, by the reaction of [(EtNH2)2SO]Cl2 with H2SO4, [(EtNH2)2SO][HSO4]2 was prepared and after that, it was characterized by FT-IR, 1H NMR, 13C NMR as well as Hammett acidity function. This dicationic ionic liquid was used as a catalyst for the synthesis of xanthenediones via condensation of structurally diverse aldehydes and dimedone under solvent-free conditions. The progress of the reaction was monitored by thin layer chromatography (ethyl acetate/n-hexane = 3/7). Results: An efficient solvent-free method for the synthesis of xanthenediones has been developed in the presence of [(EtNH2)2SO][HSO4]2 as a powerful catalyst with high to excellent yields, and short reaction times. Additionally, recycling studies have demonstrated that the dicationic ionic liquid can be readily recovered and reused at least four times without significant loss of its catalytic activity. Conclusion: This new dicationic ionic liquid can act as a highly efficient catalyst for xanthenediones synthesis under solvent-free conditions.


2020 ◽  
Vol 17 (11) ◽  
pp. 857-863
Author(s):  
Mohammad Ali Nasseri ◽  
Seyyedeh Ameneh Alavi ◽  
Milad Kazemnejadi ◽  
Ali Allahresani

A convenient and efficient chiral CuFe2O4@SiO2-Mn(III) Ch.salen nanocatalyst has been developed for the C-N cross-coupling reactions of aryl halides/ phenylboronic acid with N-heterocyclic compounds in water and/or DMSO under mild conditions. The catalyst could be applied for the N-arylation of a variety of nitrogen-containing heterocycles with aryl chlorides, bromides, iodides and phenylboronic acid under mild conditions. Moderate to good yields were achieved for all substrates. The structure of catalyst was characterized using various techniques including FT-IR, FE-SEM, EDX, XRD, TEM and TGA. The catalyst can be simply recovered and reused for several times without significant loss of activity.


Author(s):  
Vicna Kim ◽  
Eun Ju Shin ◽  
Hogeun Ahn ◽  
Minchul Chung ◽  
Sunghun Jung ◽  
...  

2019 ◽  
Vol 16 (5) ◽  
pp. 776-786 ◽  
Author(s):  
Deepa ◽  
Geeta D. Yadav ◽  
Mohd J. Aalam ◽  
Pooja Chaudhary ◽  
Surendra Singh

Objective:DABCO salts were evaluated as catalysts for the Biginelli reaction between 4- methoxybenzaldehyde, urea and ethyl acetoacetate under solvent-free conditions. 1,4-Diazabicyclo [2.2.2] octane triflate was found to be a simple, inexpensive, highly efficient catalyst for Biginelli reaction for a variety aromatic aldehyde with urea and ethyl acetoacetate at 80°C afforded corresponding 3,4-dihydropyrimidinones in 50-99% yields after 30-120 minutes. 1,3-Cyclohexadione was used in place of ethyl acetoacetate in the absence of urea this methodology is giving hexahydro xanthene derivatives in good to excellent yields after 3-4 hours.Methods:DABCO salt 4 (5 mol%), 4-methoxybenzaldehyde (0.73 mmol) and urea (0.73 mmol) were stirred for 10 minutes at 80°C, then ethyl acetoacetate (1.5 equiv.) was added and reaction mixture was stirred at 80°C for specified time. The resulting solution was stirred continuously and progress of the reaction was followed by TLC. The crude reaction mixture was purified by flash column chromatography on silica gel (hexane/ethyl acetate (1:2)) to give pure desired product.Results:Reaction conditions of the Biginelli reaction were optimized using 4-methoxybenzaldehyde (0.73 mmol), urea (0.73 mmol), and ethyl acetoacetate (5 equiv.) as model substrates catalyzed by 1,4-Diazabicyclo [2.2.2] octane triflate (5 mol%) in a different solvents, screening of different catalysts and different temperatures. Neat condition was found to be the best for the Biginelli condensation and corresponding 3,4- dihydropyrimidinones was obtained in good to excellent yields. When the reaction was carried out with benzaldehyde derivatives and cyclohexane-1,3-dione in place of ethyl acetoacetate in the absence of urea, solely corresponding hexahydro xanthene derivatives were obtained in 61-91% yields.Conclusion:In conclusion, we have applied salts of 1,4-Diaza-bicyclo [2.2.2] octane as catalysts in the Biginelli condensation and corresponding 3,4-dihydropyrimidinones were obtained in 50- 99% yields under solvent free conditions. This methodology is having advantages like simple work-up; low loading of catalyst and reaction was performed at moderate temperature under solvent-free conditions.


2020 ◽  
Vol 17 (2) ◽  
pp. 117-130 ◽  
Author(s):  
Mehdi Kalhor ◽  
Zohre Zarnegar ◽  
Zahra Seyedzade ◽  
Soodabeh Banibairami

Background: SO3H-functionalized zeolite-Y was prepared and used as a catalyst for the synthesis of 2-aryl-N-benzimidazole-4-thiazolidinones and tri-substituted imidazoles at ambient conditions. Objective: The goals of this catalytic method include excellent yields and high purity, inexpensive procedure and ease of product isolation, the use of nontoxic and heterogeneous acid catalyst, shorter reaction times and milder conditions. Materials and Methods: NMR spectra were recorded on Brucker spectrophotometer using Me4Si as internal standard. Mass spectra were recorded on an Agilent Technology 5975C VL MSD with tripe-axis detector. FTIR spectra were obtained with KBr disc on a galaxy series FT-IR 5000 spectrometer. The surface morphology of nanostructures was analyzed by FE-SEM (EVO LS 10, Zeiss, Carl Zeiss, Germany). BET analysis were measured at 196 °C by a Japan Belsorb II system after the samples were vacuum dried at 150°C overnight. Results: The NSZ was characterized by FT-IR, FESEM, EDX, XRF, and BET. The catalytic activity of NSZ was investigated for synthesis of 1,3-tiazolidin-4-ones in H2O/Acetone at room temperature. Moreover, NSZ was used for synthesis of tri-substituted imidazoles at 60 °C via solvent-free condensation. Different kinds of aromatic aldehydes were converted to the corresponding of products with good to excellent yields. Conclusion: Sulfonated zeolite-Y was as an efficient catalyst for the preparation of N-benzimidazole-2-aryl-1,3- thiazolidin-4-ones and 2,4,5-triaryl-1H-imidazoles. High reaction rates, elimination toxic solvent, simple experimental procedure and reusability of the catalyst are the important features of this protocol.


Sign in / Sign up

Export Citation Format

Share Document