In-situ MOFs coating on 3D-channeled separator with superior electrolyte uptake capacity for ultrahigh cycle stability and dendrite-inhibited lithium-ion batteries

Author(s):  
Leixin Deng ◽  
Chenyang Cai ◽  
Yangze Huang ◽  
Yu Fu
2020 ◽  
pp. 095400832096455
Author(s):  
Wei Song ◽  
Weiwei Cui ◽  
Xu Wang ◽  
Zeyu Lin ◽  
Wei Deng ◽  
...  

To improve the safety of lithium-ion batteries (LIBs), a polyether amide–silica (PEI-SiO2) composite membrane was developed by the in situ hydrolysis of tetraethylorthosilicate (TEOS) and its subsequent self-assembly on the surface of PEI fibers. Because of the presence of the SiO2 shell, the PEI-SiO2 composite membrane exhibited good thermal stability at high temperatures. The composite membrane did not change its color and size after heating at 200°C for 1 h as well as exhibited excellent flame retardancy. Moreover, the membrane maintained its high porosity even after the introduction of shell layers. The electrolyte is completely absorbed in the membrane within 0.5 s. The electrolyte uptake was up to 625%, and the ionic conductivity was up to 1.9 mS/cm at room temperature. Compared to the polyolefin membrane and the pure PEI membrane, the PEI-SiO2 composite membrane showed higher electrochemical stability, with an electrochemical window of up to 5.5 V. The battery assembled with the composite membrane showed excellent cycle stability, and the capacity retention rate was as high as 98.6% after 50 cycles. The LIBs based on the PEI-SiO2 composite membrane exhibited safe operation and high electrochemical performance, thus highlighting the applicability of the composite membrane in high-power batteries.


2020 ◽  
Vol 59 (1) ◽  
pp. 477-487 ◽  
Author(s):  
Zhuang Liu ◽  
Haiyang Fu ◽  
Bo Gao ◽  
Yixuan Wang ◽  
Kui Li ◽  
...  

AbstractThis paper studies in-situ synthesis of Fe2O3/reduced graphene oxide (rGO) anode materials by different hydrothermal process.Scanning Electron Microscopy (SEM) analysis has found that different processes can control the morphology of graphene and Fe2O3. The morphologies of Fe2O3 prepared by the hydrothermal in-situ and oleic acid-assisted hydrothermal in-situ methods are mainly composed of fine spheres, while PVP assists The thermal in-situ law presents porous ellipsoids. Graphene exhibits typical folds and small lumps. X-ray diffraction analysis (XRD) analysis results show that Fe2O3/reduced graphene oxide (rGO) is generated in different ways. Also, the material has good crystallinity, and the crystal form of the iron oxide has not been changed after adding GO. It has been reduced, and a characteristic peak appears around 25°, indicating that a large amount of reduced graphene exists. The results of the electrochemical performance tests have found that the active materials prepared in different processes have different effects on the cycle performance of lithium ion batteries. By comprehensive comparison for these three processes, the electro-chemical performance of the Fe2O3/rGO prepared by the oleic acid-assisted hydrothermal method is best.


Author(s):  
Feipeng Yang ◽  
Xuefei Feng ◽  
Yi‐Sheng Liu ◽  
Li Cheng Kao ◽  
Per‐Anders Glans ◽  
...  

2021 ◽  
Vol 54 (2) ◽  
pp. 874-887
Author(s):  
Liping Yu ◽  
Yong Zhang ◽  
Jirong Wang ◽  
Huihui Gan ◽  
Shaoqiao Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document