Effect of pad surface finish and reflow cooling rate on the microstructure and the mechanical behavior of SnAgCu solder alloys

2013 ◽  
Vol 53 (6) ◽  
pp. 892-898 ◽  
Author(s):  
S. Chavali ◽  
Y. Singh ◽  
G. Subbarayan ◽  
A. Bansal ◽  
M. Ahmad
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rafael Kakitani ◽  
Cassio Augusto Pinto da Silva ◽  
Bismarck Silva ◽  
Amauri Garcia ◽  
Noé Cheung ◽  
...  

Purpose Overall, selection maps about the extent of the eutectic growth projects the solidification velocities leading to given microstructures. This is because of limitations of most of the set of results when obtained for single thermal gradients within the experimental spectrum. In these cases, associations only with the solidification velocity could give the false impression that reaching a given velocity would be enough to reproduce a result. However, that velocity must necessarily be accompanied by a specific thermal gradient during transient solidification. Therefore, the purpose of this paper is to not only project velocity but also include the gradients acting for each velocity. Design/methodology/approach Compilation of solidification velocity, v, thermal gradient, G, and cooling rate, Ṫ, data for Sn-Cu and Sn-Bi solder alloys of interest is presented. These data are placed in the form of coupled growth zones according to the correlated microstructures in the literature. In addition, results generated in this work for Sn-(0.5, 0.7, 2.0, 2.8)% Cu and Sn-(34, 52, 58)% Bi alloys solidified under non-stationary conditions are added. Findings When analyzing the cooling rate (Ṫ = G.v) and velocity separately, in or around the eutectic composition, a consensus cannot be reached on the resulting microstructure. The (v vs. G) + cooling rate diagrams allow comprehensive analyzes of the combined v and G effects on the subsequent microstructure of the Sn-Cu and Sn-Bi alloys. Originality/value The present paper is devoted to the establishment of (v vs. G) + cooling rate diagrams. These plots may allow comprehensive analyses of the combined v and G effects on the subsequent microstructure of the Sn-Cu and Sn-Bi alloys. This microstructure-processing mapping approach is promising to predict phase competition and resulting microstructures in soldering of Sn-Cu and Sn-Bi alloys. These two classes of alloys are of interest to the soldering industry, whereas manipulation of their microstructures is considered of utmost importance for the metallurgical quality of the product.


2018 ◽  
Vol 30 (4) ◽  
pp. 233-240 ◽  
Author(s):  
Md Hasnine

Purpose This paper aims to investigate the effect of In and Sb additions on the thermal behavior and wettability of Sn-3.5Ag-xIn-ySb (x = 0, 1.0 and 1.5 Wt.%, y = 0, 1.0, 1.4 and 2.1 Wt.%) solder alloys. Design/methodology/approach The thermal behavior of the Pb-free solder alloys was studied using differential scanning calorimetry. Wetting balance experiments were performed in accordance with the IPC standard, IPC-TM-650 and at a temperature of 260°C. Also, a solder spread test was performed on a Cu surface finish using the JIS-Z-3197 solderability standard. Findings It is shown that among the selected Sn-3.5Ag-xIn-ySb (x = 0, 1.0 and 1.5 Wt.%, y = 0, 1.0, 1.4 and 2.1 Wt.%) alloys, Sn-3.5Ag-1.5In-1Sb showed the lowest melting point and the lowest undercooling temperature. The best wettability was achieved when the In and Sb contents were approximately 1.5 and 1.0 Wt.%, respectively. The effect of the combined addition of In and Sb on solder spreadability on a Cu substrate was also demonstrated. Originality/value It was found that adding approximately 1.5 and 1.0 Wt.% of In and Sb, respectively, in Sn-3.5Ag solder provided the best wetting performance and improved the solder spreadability.


Author(s):  
Sri Chaitra Chavali ◽  
Kaushik Mysore ◽  
Ganesh Subbarayan ◽  
Indranath Dutta

Aging affects both microstructure and behavior [1, 2]. Microstructural changes are driven by dislocation motion and diffusion processes. Together they affect the flow behavior in solder alloys. We address four aspects of solder microstructure and behavior as affected by aging (a) EDS studies on Ag dispersion in Sn matrix (b) a procedure for modeling intermetallic particle growth (c) a model for estimating effective viscosity of solder alloy (d) both primary and secondary creep models to predict aging effects on behavior. Solder samples were aged for different aging times (15, 30, 60, 90 days aging) and at different aging temperatures (25 C, 75 C, 125 C) prior to running creep tests. Another set of solder samples were similarly aged to characterize the microstructure. The creep data for the experiments are from a series of sixty four experiments performed using a micromechanical tester that is specially fitted with a sensitive capacitance gauge (with a resolution of 0.1 microns) to accurately measure viscoplastic responses of solder to applied loads.


JOM ◽  
2003 ◽  
Vol 55 (6) ◽  
pp. 56-60 ◽  
Author(s):  
F. Ochoa ◽  
J. J. Williams ◽  
N. Chawla

Sign in / Sign up

Export Citation Format

Share Document