Concurrent fault detection and location with minimal overhead in Ling parallel prefix adders with a scheme for fault tolerant Ling prefix adders

2021 ◽  
Vol 127 ◽  
pp. 114375
Author(s):  
Asma Iqbal ◽  
K. Manjunatha Chari
2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Jianyong Yao ◽  
Guichao Yang ◽  
Dawei Ma

The integration of internal leakage fault detection and tolerant control for single-rod hydraulic actuators is present in this paper. Fault detection is a potential technique to provide efficient condition monitoring and/or preventive maintenance, and fault tolerant control is a critical method to improve the safety and reliability of hydraulic servo systems. Based on quadratic Lyapunov functions, a performance-oriented fault detection method is proposed, which has a simple structure and is prone to implement in practice. The main feature is that, when a prescribed performance index is satisfied (even a slight fault has occurred), there is no fault alarmed; otherwise (i.e., a severe fault has occurred), the fault is detected and then a fault tolerant controller is activated. The proposed tolerant controller, which is based on the parameter adaptive methodology, is also prone to realize, and the learning mechanism is simple since only the internal leakage is considered in parameter adaptation and thus the persistent exciting (PE) condition is easily satisfied. After the activation of the fault tolerant controller, the control performance is gradually recovered. Simulation results on a hydraulic servo system with both abrupt and incipient internal leakage fault demonstrate the effectiveness of the proposed fault detection and tolerant control method.


2009 ◽  
Vol 40 (3) ◽  
pp. 289-296 ◽  
Author(s):  
Z. Sun ◽  
J. Wang ◽  
D. Howe ◽  
G.W. Jewell

2015 ◽  
Vol 764-765 ◽  
pp. 740-746
Author(s):  
Hang Yuan ◽  
Chen Lu ◽  
Ze Tao Xiong ◽  
Hong Mei Liu

Fault detection for aileron actuators mainly involves the enhancement of reliability and fault tolerant capability. Considering the complexity of the working conditions of aileron actuators, a fault detection method for an aileron actuator under variable conditions is proposed in this study. A bi-step neural network is utilized for fault detection. The first neural network, which is employed as the observer, is established to monitor the aileron actuator and generate the residual error. The other neural network generates the corresponding adaptive threshold synchronously. Faults are detected by comparing the residual error and the threshold. In considering of the variable conditions, aerodynamic loads are introduced to the bi-step neural network. The training order spectrums are designed. Finally, the effectiveness of the proposed scheme is demonstrated by a simulation model with different faults.


2012 ◽  
Vol 59 (1) ◽  
pp. 257-268 ◽  
Author(s):  
Sudarat Khwan-on ◽  
Liliana de Lillo ◽  
Lee Empringham ◽  
Pat Wheeler

2017 ◽  
Vol 40 (10) ◽  
pp. 2991-2998
Author(s):  
Quanchao Dong ◽  
Hongyan Yang

This paper presents a finite frequency-based active fault tolerant control approach for the compensation of unknown failures in linear time-delay plants. An integration of fault detection filter based on observer technology and [Formula: see text] controller in residual feedback form is considered in the active fault tolerant control system. Different from the traditional schemes, exact fault estimation is not necessary in the proposed active fault tolerant control. To achieve the desired system performance when a fault occurs, the residual is directly embedded in the control loop as a feedback term to compensate the influence of fault. By employing the Generalized Kalman–Yakubovich–Popov lemma, we derive the sufficient conditions of the existence of such an active fault tolerant control plant, and iterative algorithms are applied to obtain the solutions to the fault detection filter and controller parameter matrices. Finally, simulation results are proposed to demonstrate the effectiveness of the developed scheme.


Automatica ◽  
2019 ◽  
Vol 99 ◽  
pp. 308-316 ◽  
Author(s):  
Linlin Li ◽  
Hao Luo ◽  
Steven X. Ding ◽  
Ying Yang ◽  
Kaixiang Peng

2017 ◽  
Vol 11 (1) ◽  
pp. 68-86 ◽  
Author(s):  
Jun Wang ◽  
Xiaowan Yao ◽  
Wei Li

In this paper, the authors aimed to analyze uncertain nonlinear networked control systems (NCS) under discrete event-triggered communication scheme (DETCS), in which an integrated design methodology between robust fault detection observer and active fault-tolerant controller is proposed. Moreover, the problem of hybrid active–passive robust fault-tolerant control, which integrated passive fault-tolerant control, fault detection, and controller reconstruction, is researched. In consideration of the impact of uncertainties and network-induced delay on system performance, a new class of uncertain nonlinear NCS fault model is established based on T-S fuzzy model. By employing Lyapunov stability theory, H∞ control theory, and linear matrix inequality method, the fault detection observer and hybrid fault-tolerant controller are both appropriately designed. In addition, the sufficient condition that guaranteed the asymptotically robust stability of nonlinear NCS against any actuator failures is deduced. Finally, a numerical simulation is provided to show the effectiveness of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document