To pre-challenge lactic acid bacteria with simulated gastrointestinal conditions is a suitable approach to studying potential probiotic properties

2014 ◽  
Vol 107 ◽  
pp. 138-146 ◽  
Author(s):  
Hui-Ying Huang ◽  
Hsin-Yi Hsieh ◽  
V. An-Erl King ◽  
Li-Ling Chi ◽  
Jen-Horng Tsen
2012 ◽  
Vol 57 (No. 3) ◽  
pp. 137-149 ◽  
Author(s):  
H. Musikasang ◽  
N. Sohsomboon ◽  
A. Tani ◽  
S. Maneerat

Bacteriocin-producing lactic acid bacteria (LAB) were isolated and screened from the gastrointestinal tract (GIT) of Thai indigenous chickens. The bacteriocinogenic activities and the primary probiotic properties were determined. The bacteriocins produced by 14 strains of selected LAB displayed inhibitory activity against indicator strains after the supernatants were neutralized with NaOH in the following species: Lactobacillus sakei subsp. sakei JCM1157, Enterococcus faecalis VanB, Bacillus sp., and Listeria monocytogenes. The antagonistic acti-vity of selected LAB was inactivated or decreased after being treated with proteolytic enzymes (α-chymotrypsin and trypsin). CR5-1 strain exhibited the highest level of activity (5120 AU/ml) in the stationary phase against L. sakei subsp. sakei JCM1157 in MRS broth at 37°C. The nine isolates of selected LAB were investigated for primary probiotic properties. The survival of the nine isolates was found to decrease approximately by 3 log CFU/ml after passing through the gastrointestinal conditions. All isolates exhibited protein digestion on agar plates but no isolates showed the ability to digest starch and lipid. Most of them showed high susceptibilities to some antibiotics (penicillin G, tetracycline and erythromycin). Thirteen LAB strains producing bacteriocin with strongly inhibitory activity were identified as Lactobacillus salivarius and only one strain was identified by 16S rDNA sequence analysis as Lactobacillus agilis.    


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Mehmet Tokatlı ◽  
Gökşen Gülgör ◽  
Simel Bağder Elmacı ◽  
Nurdan Arslankoz İşleyen ◽  
Filiz Özçelik

The suitable properties of potential probiotic lactic acid bacteria (LAB) strains (preselected among 153 strains on the basis of their potential technological properties) isolated from traditional Çubuk pickles were examinedin vitro. For this purpose, these strains (21Lactobacillus plantarum, 11Pediococcus ethanolidurans,and 7Lactobacillus brevis) were tested for the ability to survive at pH 2.5, resistance to bile salts, viability in the presence of pepsin-pancreatin, ability to deconjugate bile salts, cholesterol assimilation, and surface hydrophobicity properties. Most of the properties tested could be assumed to be strain-dependent. However,L. plantarumandL. brevisspecies were found to possess desirable probiotic properties to a greater extent compared toP. ethanolidurans. In contrast toP. ethanoliduransstrains, the testedL. plantarumandL. brevisstrains exhibited bile salt tolerance, albeit to different extent. All tested strains showed less resistance to intestinal conditions than gastric juice environment. Based on the survival under gastrointestinal conditions, 22 of the 39 strains were selected for further characterization. The eight strains having the highest cholesterol assimilation and surface hydrophobicity ratios could be taken as promising probiotic candidates for furtherin vivostudies, because of the strongest variations found among the tested strains with regard to these properties.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 768
Author(s):  
Christos Bontsidis ◽  
Athanasios Mallouchos ◽  
Antonia Terpou ◽  
Anastasios Nikolaou ◽  
Georgia Batra ◽  
...  

On the frame of this research survey, a novel potentially probiotic strain (Lactobacillus paracasei SP5) recently isolated from kefir grains was evaluated for chokeberry juice fermentation. Chokeberry juice was retrieved from the variety Aronia melanocarpa, a plant known to provide small, dark berries and to be one of the richest sources of antioxidants. The juice was subsequently fermented inoculating L. paracasei SP5 for 48 h at 30 °C. The fermented juices were left at 4 °C and tested regarding microbiological and physicochemical characteristics for 4 weeks. The potentially probiotic strain was proved capable of performing lactic acid fermentation at 30 °C. Cell viability of L. paracasei was detected in high levels during fermentation and the whole storage period, while the fermented juice showed higher levels of viability in juice with 40.3 g/L of initial sugar concentration. No ethanol was detected in the final fermented juice. Fermented chokeberry juice was characterized by aromatic desirable volatiles, which were retained in adequate levels for the whole storage period. Specifically, the occurrence of organic esters detected in fermented juices is considered as positive evidence of the provision of fruity and floral notes to the final product. During storage, total phenolics content and antioxidant activity were observed in higher levels in fermented chokeberry juice compared with non-fermented juice. Subsequently, fermentation of chokeberry juice by potentially probiotic lactic acid bacteria could provide high industrialization potential, providing the market with a nutritional beverage of good volatile quality with an enhanced shelf-life compared with an unfermented fresh juice.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Guesh Mulaw ◽  
Tesfaye Sisay Tessema ◽  
Diriba Muleta ◽  
Anteneh Tesfaye

Probiotics are live microorganisms which when consumed in large number together with a food promote the health of the consumer. The aim of this study was to evaluate in vitro probiotic properties of lactic acid bacteria (LAB) isolated from traditional Ethiopian fermented Teff injera dough, Ergo, and Kocho products. A total of 90 LAB were isolated, of which 4 (4.44%) isolates showed 45.35–97.11% and 38.40–90.49% survival rates at pH values (2, 2.5, and 3) for 3 and 6 h, in that order. The four acid-tolerant isolates were found tolerant to 0.3% bile salt for 24 h with 91.37 to 97.22% rate of survival. The acid-and-bile salt-tolerant LAB isolates were found inhibiting some food-borne test pathogenic bacteria to varying degrees. All acid-and-bile-tolerant isolates displayed varying sensitivity to different antibiotics. The in vitro adherence to stainless steel plates of the 4 screened probiotic LAB isolates were ranged from 32.75 to 36.30% adhesion rate. The four efficient probiotic LAB isolates that belonged to Lactobacillus species were identified to the strain level using 16S rDNA gene sequence comparisons and, namely, were Lactobacillus plantarum strain CIP 103151, Lactobacillus paracasei subsp. tolerans strain NBRC 15906, Lactobacillus paracasei strain NBRC 15889, and Lactobacillus plantarum strain JCM 1149. The four Lactobacillus strains were found to be potentially useful to produce probiotic products.


2007 ◽  
Vol 2007 ◽  
pp. 104-104
Author(s):  
S Savvidou ◽  
J. Beal ◽  
P. Brooks

The association of salmonella infections with the consumption of poultry products and the fact that in the live bird the Salmonella carriage is mainly asyptomatic have led to a demand for finding ways of preventing infection of commercially reared poultry and product contamination (Revolledo et al., 2006). One approach is the use of probiotics. The probiotic properties of lactic acid bacteria have been widely studied. Their capacity for adhesion to mucus, ability to autoaggregate and potential for coaggregation with pathogenic bacteria are potential mechanisms for providing a competitive advantage in the intestinal microbiota (Ghadban et al, 2002) and forming a barrier that prevents colonization of pathogenic microorganisms (Kos et al, 2003). In this study, a total of 53 lactic acid bacteria (LAB) were isolated from the contents of the crop, caecum and small intestine, and from the mucosa of the crop, jejunum and ileum of three organically farmed chickens, were examined for autoaggregation and coaggregation with Salmonella enteritidis.


2015 ◽  
Vol 7 (5) ◽  
pp. 42-52 ◽  
Author(s):  
Tatsinkou Fossi Bertrand ◽  
Bonjah Ekue Natalia ◽  
Takop Nchanji Gordon ◽  
Ngah BongsiysiGilake ◽  
Ane Anyangwe Irene ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document