Isolation of lactic acid bacteria from chickens that demonstrate probiotic properties of autoaggregation and coaggregation with Salmonella enteritidis

2007 ◽  
Vol 2007 ◽  
pp. 104-104
Author(s):  
S Savvidou ◽  
J. Beal ◽  
P. Brooks

The association of salmonella infections with the consumption of poultry products and the fact that in the live bird the Salmonella carriage is mainly asyptomatic have led to a demand for finding ways of preventing infection of commercially reared poultry and product contamination (Revolledo et al., 2006). One approach is the use of probiotics. The probiotic properties of lactic acid bacteria have been widely studied. Their capacity for adhesion to mucus, ability to autoaggregate and potential for coaggregation with pathogenic bacteria are potential mechanisms for providing a competitive advantage in the intestinal microbiota (Ghadban et al, 2002) and forming a barrier that prevents colonization of pathogenic microorganisms (Kos et al, 2003). In this study, a total of 53 lactic acid bacteria (LAB) were isolated from the contents of the crop, caecum and small intestine, and from the mucosa of the crop, jejunum and ileum of three organically farmed chickens, were examined for autoaggregation and coaggregation with Salmonella enteritidis.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Guesh Mulaw ◽  
Tesfaye Sisay Tessema ◽  
Diriba Muleta ◽  
Anteneh Tesfaye

Probiotics are live microorganisms which when consumed in large number together with a food promote the health of the consumer. The aim of this study was to evaluate in vitro probiotic properties of lactic acid bacteria (LAB) isolated from traditional Ethiopian fermented Teff injera dough, Ergo, and Kocho products. A total of 90 LAB were isolated, of which 4 (4.44%) isolates showed 45.35–97.11% and 38.40–90.49% survival rates at pH values (2, 2.5, and 3) for 3 and 6 h, in that order. The four acid-tolerant isolates were found tolerant to 0.3% bile salt for 24 h with 91.37 to 97.22% rate of survival. The acid-and-bile salt-tolerant LAB isolates were found inhibiting some food-borne test pathogenic bacteria to varying degrees. All acid-and-bile-tolerant isolates displayed varying sensitivity to different antibiotics. The in vitro adherence to stainless steel plates of the 4 screened probiotic LAB isolates were ranged from 32.75 to 36.30% adhesion rate. The four efficient probiotic LAB isolates that belonged to Lactobacillus species were identified to the strain level using 16S rDNA gene sequence comparisons and, namely, were Lactobacillus plantarum strain CIP 103151, Lactobacillus paracasei subsp. tolerans strain NBRC 15906, Lactobacillus paracasei strain NBRC 15889, and Lactobacillus plantarum strain JCM 1149. The four Lactobacillus strains were found to be potentially useful to produce probiotic products.


2018 ◽  
Vol 119 ◽  
pp. 208-215 ◽  
Author(s):  
Wandee Sirichokchatchawan ◽  
Puwiya Pupa ◽  
Prasert Praechansri ◽  
Nutthee Am-in ◽  
Somboon Tanasupawat ◽  
...  

2019 ◽  
Author(s):  
Guesh Mulaw ◽  
Tesfaye Sisay ◽  
Diriba Muleta ◽  
Anteneh Tesfaye

AbstractProbiotics are live microorganisms which when consumed in large number together with a food promote the health of the consumer. The aim of this study was to evaluatein vitroprobiotic properties of lactic acid bacteria (LAB) isolated from traditional Ethiopian fermentedTeff injeradough,ErgoandKochoproducts. A total of 90 LAB were isolated, of which 4 (4.44%) isolates showed 45.35-97.11% and 38.40-90.49% survival rate at pH values (2, 2.5 and 3) for 3 and 6 h in that order. The four acid tolerant isolates were found tolerant to 0.3% bile salt for 24 h with 91.37 to 97.22% rate of survival. The acid-and-bile salt tolerant LAB isolates were found inhibiting some foodborne test pathogenic bacteria to varying degrees. All acid-and-bile tolerant isolates displayed varying sensitivity to different antibiotics. Thein vitroadherence to stainless steel plates of the 4 screened probiotic LAB isolates were ranged from 32.75 to 36.30% adhesion rate. The four efficient probiotic LAB isolates that belonged toLactobacillusspecies were identified to strain level using 16S rDNA gene sequence comparisons and namely wereLactobacillus plantarumstrain CIP 103151,Lactobacillus paracaseisubsp. tolerans strain NBRC 15906,Lactobacillus paracaseistrain NBRC 15889 andLactobacillus plantarumstrain JCM 1149. The fourLactobacillusstrains were found to have potentially useful to produce probiotic products.


2021 ◽  
Vol 7 (4) ◽  
pp. 431-446
Author(s):  
Sunisa Suwannaphan ◽  

<abstract> <p>The probiotic potential of lactic acid bacteria (LAB) isolated from Thai traditional fermented food was investigated. Forty-two samples were collected from four markets in Phra Nakhon Si Ayutthaya Province. Out of 50 isolated LAB, 6 (a3, f4, f8, K1, K4 and K9) obtained from pla-ra and bamboo shoot pickle samples showed high tolerance to gastrointestinal tract conditions. These isolates were selected to identify and characterize their probiotic properties. Isolate a3 was identified as <italic>Weissella thailandensis</italic>, isolates f4 and f8 were identified as belonging to <italic>Enterococcus thailandicus</italic> and isolates K1, K4 and K9 were determined as <italic>Limosilactobacillus fermentum</italic>. All six LAB exhibited high autoaggregation ability (93.40–95.01%), while <italic>W. thailandensis</italic> isolate a3 showed potential for coaggregation in almost all the pathogenic bacteria tested. Cell-free supernatant (CFS) obtained from all isolates did not inhibit <italic>Staphylococcus aureus</italic>. CFS derived from <italic>L. fermentum</italic> isolate K4 showed the most efficient antimicrobial activity, in particular against Gram-negative bacteria, while <italic>L. fermentum</italic> isolate K4 presented high surface hydrophobicity in the presence of xylene and n-hexane. All LAB isolates were found to be resistant to clindamycin and nalidixic acid, whereas <italic>E. thailandicus</italic> isolate f8 exhibited resistance to most of the antibiotics tested. <italic>L. fermentum</italic> isolate K4 showed promise as a suitable probiotic candidate for future applications in the food industry due to tolerance to gastrointestinal tract conditions with high surface hydrophobicity and inhibited most of the pathogens tested.</p> </abstract>


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1777
Author(s):  
Hyejin Sohn ◽  
You Hyun Chang ◽  
Jong Hyeok Yune ◽  
Chang Hee Jeong ◽  
Dong Min Shin ◽  
...  

The purpose of this study was to investigate the probiotic properties of lactic acid bacteria isolated from Korean radish water kimchi (dongchimi). A total of 800 isolates of lactic acid bacteria were isolated from kimchi, and the strain having reduction and tolerance capability for nitrate and nitrite was selected and identified as Lactiplantibacillus plantarum LB5 (LPLB5) by 16S rRNA sequencing. LPLB5 showed higher tolerance to acidic pH values (pH 2.5), 0.3% bile salts, and heat treatment (40, 50, and 60 °C). Antibacterial activity showed strong inhibition against four food-borne pathogenic bacteria (E. coli O157:H7 ATCC 35150, Pseudomonas aeruginosa KCCM 12539, Listeria monocytogenes KCCM 40307, and Staphylococcus aureus ATCC 25923). The strain did not show any antibiotic resistance, β-hemolytic activity, or ability to produce β-glucuronidase. LPLB5 also exhibited a 30% auto-aggregation ability and 33–60% co-aggregation ability with four pathogenic bacteria (E. coli O157: H7 ATCC 35150, E. coli KCTC 2571, L. monocytogenes ATCC 51776, and S. aureus ATCC 25923). Moreover, the strain showed approximately 40% 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical- and 10% 2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical-scavenging activity. In cell culture studies, human colon epithelial cells (Caco-2) were treated with LPLB5 (106 and 107 CFU/mL); the bacteria showed more than 70% adherence onto and a 32% invasion rate into the Caco-2 cells. LPLB5 significantly decreased the mRNA expression levels of pro-inflammatory cytokines (interleukin-1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α)) and increased the mRNA expression levels of anti-inflammatory cytokines (interleukin-4 (IL-4), interleukin-10 (IL-10), and interferon-gamma (IFN-γ)) in lipopolysaccharide-stimulated Caco-2 cells. Our data suggest that LPLB5 is safe and possesses probiotic, antioxidant, and anti-inflammatory activities.


2021 ◽  
Vol 16 (4) ◽  
pp. 328-333
Author(s):  
H. D. Shihah ◽  
D. Sunarti ◽  
S. Sumarsih

The balancing of digestive tract microbe can improve the digestive health of broiler chickens. Fermented lime waste flour (FLWF) contains citric acid, which can decrease digestive tract pH value to suppress pathogenic bacteria development and improve lactic acid bacteria growth in the small intestine of the broiler. The purpose of the study was to evaluate the effect of using FLWF on pH value and small intestine microbial of broiler chickens. This study used 200 female broiler chickens. The research used a completely randomized design with four treatment levels of FLWF by 0%, 1%, 2%, and 3% in every ration, with each treatment replicated five times. The parameters observed are the pH value of the small intestine, lactic acid bacteria ileum, and Coliform ileum. Data were calculated using the analysis of variance and difference test with Duncan's Multiple Range Test using the SPSS 19.0 program. The result indicates that using FLWF decreased (p<0.05) Coliform in the ileum, while pH value of small intestine and ileum lactic acid bacteria among treatments were not influenced (p>0.05). It concludes that adding FLWF at a 1% level could decrease ileum Coliform. Still, it could not decrease the pH value of the small intestine and increase the total lactic bacteria ileum. 


Author(s):  
Sri Melia ◽  
Yuherman Yuherman ◽  
Jaswandi Jaswandi ◽  
Endang Purwati

Objective: The aim of this research was to isolate and identify lactic acid bacteria using 16S rRNA and evaluates their potential as probiotics.Methods: The probiotic properties measured were resistance to low pH and to 0.3% and 0.5% bile salts, antimicrobial activity against pathogenic bacteria (Escherichia coli O157:H7 and Staphylococcus aureus ATCC 25923), antibiotic resistance, and hydrophobicity.Results: The lactic acid bacteria with optimal probiotic properties were isolated from buffalo milk and identified from a sample from Agam district (BMA 3.3) which was classified using BLAST analysis as a strain of Lactobacillus fermentum (L23). Conclusion: Buffalo milk from this part of West Sumatera contains a strain of L. fermentum with has good probiotic properties.


2021 ◽  
Author(s):  
Jaruwan Sitdhipol ◽  
Kanidta Niwasabutra ◽  
Neungnut Chaiyawan ◽  
Siritorn Teerawet ◽  
Punnathorn Thaveethaptaikul ◽  
...  

Abstract Fourteen lactic acid bacteria from fermented foods and feces of healthy animals in Thailand were characterized for their potential as probiotics. All isolates could survive in simulated gastrointestinal fluid (pH 2) and bile salt solution (pH 8) more than 70% and 63%, when compare with initial cell concentration, respectively. Adhesion test showed more than 70% adhesive property an in vitro experiment. The susceptibility assay showed that all isolates were susceptible to amoxicillin, ampicillin, erythromycin, chloramphenicol, clindamycin, imipenem, kanamycin, norfloxacin, penicillin, tetracycline and vancomycin. Based on phenotypic and genetic characteristics, they belonged to the genera Lactiplantibacillus, Levilactobacillus, Capanilactobacillus, Pediococcus, Enterococcus, Limosilactobacillus and Lacticaseibacillus. The isolates exhibited antimicrobial ability against pathogenic bacteria; Gram positive strains (Staphylococcus aureus TISTR 1466 and Listeria monocytogenes TISTR 2196) and Gram negative (Escherichia coli TISTR 780, Salmonella enteritidis TISTR 2202 and Salmonella typhimurium TISTR 292). Limosilactobacillus reuteri MF67.1 and Companilactobacillus farciminis R7-1 showed bile salt hydrolase activity. Cell-free culture supernatants of all 14 isolates were screened for immunomodulating effects on Tumor Necrosis Factor Alpha (TNF-α) production. Twelve isolates were able to decrease TNF-α production at different levels, especially Lactiplantibacillus paraplantarum R26-3 and Lacticaseibacillus zeae M2/5 could high inhibit TNF-α production, showing 34 and 29% reduction, respectively. These results suggested that all 14 strains met the general criteria of probiotics and four strains, including Lacticaseibacillus zeae M2/5, Lactiplantibacillus paraplantarum R26-3, Limosilactobacillus reuteri MF67.1 and Companilactobacillus farciminis R7-1, represent interesting candidates for further studies as anti-inflammatory (M2/5, R26-3) or cholesterol reducing agents (MF67.1, R7-1) in vivo animal models.


2019 ◽  
Vol 69 (13) ◽  
pp. 1557-1565 ◽  
Author(s):  
Iulia-Roxana Angelescu ◽  
Medana Zamfir ◽  
Mihaela-Marilena Stancu ◽  
Silvia-Simona Grosu-Tudor

Abstract Purpose Scientific information regarding the microbial content and functional aspects of fermented beverages traditionally produced in certain parts of Europe are scarce. However, such products are believed to have some health benefits and might contain functional bacterial strains, such as probiotics. The aim of the study was to identify such lactic acid bacteria strains isolated from water kefir and, for the first time, from braga, a Romanian fermented beverage made of cereals. Methods Lactic acid bacteria (LAB) were identified to species level based on (GTG)5-PCR fingerprinting and 16S rRNA gene sequencing. Selected strains were screened for their antibacterial activity and probiotic potential. Results Eight isolates belonging to seven Lactobacillus species were recovered from the two drinks. The identification of LAB involved in the fermentation of braga (Lactobacillus plantarum, Lactobacillus fermentum, and Lactobacillus delbrueckii) is firstly reported here. Five of the Lactobacillus isolates showed antibacterial activity against pathogenic bacteria, including Listeria monocytogenes, Escherichia coli, Staphylococcus aureus, and Salmonella enterica. Moreover, most of them showed a good resistance to pH 2.5 and some survived at high concentrations of bile salts (up to 2%). Two L. plantarum isolates were able to inhibit all the indicator strains, and showed the best viability (about 70%) after a sequential treatment simulating the passage through the gastrointestinal tract. Conclusion Based on the results, the most promising candidates for designing new probiotic products are: L. plantarum BR9 from braga and L. plantarum CR1 from water kefir.


2020 ◽  
Vol 8 (1) ◽  
pp. 8-14
Author(s):  
Andri Kusmayadi ◽  
Novia Rahayu

The number of beneficial microbial populations (lactic acid bacteria/LAB) and pathogens (coliform) in the digestive tract of ducks is one indicator of duck health status. Healthy ducks have a beneficial microbial population more than pathogenic bacteria. The addition of herbal ingredients such as mangosteen peel and turmeric flour is thought to improve the health of ducks by increasing the LAB population. The purpose of this study was to examine the effect of the combination of mangosteen peel flour and turmeric flour on the total lactic acid bacteria and coliform of small intestine and caecum of Cihateup duck. The study was conducted experimentally using 60 male Cihateup ducks grouped into 5 feed treatments which contains a combination of mangosteen peel and turmeric flour at different levels as follows: 0.5% (R1); 1.0% (R2); 1.5% (R3); 2.0% (R4); and 2.5% (R5), respectively. The variables studied were total lactic acid and coliform bacteria in the small intestine and caecum of Cihateup ducks. The results showed that the treatments of feed significantly (P<0.05) affected the total lactic acid bacteria (except caecum) and coliform bacteria. The population of lactic acid bacteria tended to increase along with the increasing dose of combination treatment of mangosteen peel and turmeric flour. In contrast, the total population of coliform bacteria in the small intestine and caecum of ducks showed a tendency to decrease with increasing treatment doses. The use of a combination of mangosteen peel and turmeric flour at higher levels (2.0 – 2.5%) can increase the total LAB and decrease coliform bacteria in the small intestine and cecum of Cihateup duck.


Sign in / Sign up

Export Citation Format

Share Document