gastrointestinal conditions
Recently Published Documents


TOTAL DOCUMENTS

513
(FIVE YEARS 207)

H-INDEX

43
(FIVE YEARS 8)

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 231
Author(s):  
Ji Eun Kim ◽  
Ji Yeon Lee ◽  
Chang-Ho Kang

Hyperglycemia due to uncontrolled glucose regulation is widely known as cause of diabetes, non-alcoholic fatty liver disease (NAFLD), and other complications. NAFLD refers to a condition in which fat is excessively accumulated, whether inflamed or not, and has caused serious medical problems in recent years. The aim of this study was to explore the antihyperglycemia effects of Limosilactobacillus fermentum MG4295 (L. fermentum MG4295) in high-fat diet (HFD)-induced in vivo. We demonstrated the suitability of L. fermentum MG4295 as a probiotic by observing its stability, survivability, and proliferation under simulated gastrointestinal conditions, and safety, antibiotic susceptibility, hemolysis, and enzyme activity. The potential antihyperglycemic activity of L. fermentum MG4295 was investigated in an HFD and sugar-water-induced mouse model. Administration of this strain for 12 weeks showed an improved trend in glucose tolerance, insulin, alanine amino transferase, total cholesterol, low-density lipoprotein cholesterol, and glucagon-like peptide-1. Histopathological analysis revealed that L. fermentum MG4295 significantly reduced the histopathological scores of hepatic steatosis, inflammation, and hepatocellular hypertrophy in liver tissues and lipid content in adipose tissues. Administration of L. fermentum MG4295 upregulated IRS-1, AKT, and GLUT4 and downregulated G6Pc and PEPCK expression in liver and/or muscle tissues. Our results suggest that L. fermentum MG4295 can improve hyperglycemia. Furthermore, it can be used as a dietary functional supplement to manage blood glucose.


Author(s):  
Eulália Lopes da Silva BARROS ◽  
Callebe Camelo SILVA ◽  
Silvani VERRUCK ◽  
Maria Helena Machado CANELLA ◽  
Bruna Marchesan MARAN ◽  
...  

2021 ◽  
Vol 204 (1) ◽  
Author(s):  
Noádia Priscilla Araújo Rodrigues ◽  
Estefânia Fernandes Garcia ◽  
Karoliny Brito Sampaio ◽  
Heloísa Maria Almeida do Nascimento ◽  
Jossana Pereira de Sousa Guedes ◽  
...  

2021 ◽  
Author(s):  
Ahmet Yetiman ◽  
Fatih ORTAKCI

The aim of present study was to perform functional and genomic characterization of a novel Liquorilactobacillus nagelii AGA58 isolated from Shalgam to understand its metabolic potentials. AGA58 is gram-positive,catalase-negative and appears as short-rods under light-microscope. The AGA58 chromosome composed of a single linear chromosome of 2,294,535 bp that is predicted to carry 2151 coding sequences, including 45 tRNA genes, 4 rRNA operons. Genome has a GC content of 36.9% includes 45 pseudogenes, 32 transposases and one intact-prophage. AGA58 is micro-anaerobic owing to shorter doubling time and faster growth rate achieved compared microaerofilic condition. It carries flagellar biosynthesis protein-encoding genes predicting motile behavior. AGA58 is an obligatory homofermentative where hexose sugars such as galactose, glucose, fructose, sucrose, mannose, N-acetyl glucosamine, maltose, trehalose are fermented to lactate thru glycolysis and no acid production from pentose sugars achieved due to lack of key enzyme namely phosphoketolase in pentose phosphate pathway. Carbohydrate fermentation tests showed AGA58 cannot ferment pentoses which was also confirmed in silico. Putative pyruvate metabolism revealed formate, malate, oxaloacetate, acetate, acetaldehyde, acetoin and lactate forms from pyruvate. AGA58 predicted to carry bacteriocin genes for type A2 lantipeptide, Blp family class II bacteriocins showing antimicrobial potential of this bacterium which can be linked to antagonism tests that AGA58 can inhibit E. coli O157:H7, S. Typhimurium ATCC14028, and K. pneumonia ATCC13883. Moreoever, AGA58 is tolerant to acid and bile concentrations simulating the human gastrointestinal conditions. L. nagelii AGA58 depicting the probiotic potential of AGA58 as a first report in literature within same species.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7358
Author(s):  
Inés Abad ◽  
Celia Conesa ◽  
Lourdes Sánchez

Lactoferrin (LF) is a whey protein with various and valuable biological activities. For this reason, LF has been used as a supplement in formula milk and functional products. However, it must be considered that the properties of LF can be affected by technological treatments and gastrointestinal conditions. In this article, we have revised the literature published on the research done during the last decades on the development of various technologies, such as encapsulation or composite materials, to protect LF and avoid its degradation. Multiple compounds can be used to conduct this protective function, such as proteins, including those from milk, or polysaccharides, like alginate or chitosan. Furthermore, LF can be used as a component in complexes, nanoparticles, hydrogels and emulsions, to encapsulate, protect and deliver other bioactive compounds, such as essential oils or probiotics. Additionally, LF can be part of systems to deliver drugs or to apply certain therapies to target cells expressing LF receptors. These systems also allow improving the detection of gliomas and have also been used for treating some pathologies, such as different types of tumours. Finally, the application of LF in edible and active films can be effective against some contaminants and limit the increase of the natural microbiota present in meat, for example, becoming one of the most interesting research topics in food technology.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2401
Author(s):  
Jakkrit Aisara ◽  
Pairote Wongputtisin ◽  
Somkid Deejing ◽  
Chutamas Maneewong ◽  
Kridsada Unban ◽  
...  

Red onion is a popular ingredient in many Thai dishes and has recently been promoted for commercial cultivation. In this study, inulin-fructooligosaccharides (inulin-FOSs) were extracted from red onions in a simplified extraction method. The extract contained 24.00 ± 0.38 g/L free glucose, fructose and sucrose, while the level of FOSs was recorded at 74.0 ± 2.80 g/L with a degree of polymerization of 4.1. The extract was resistant to simulated gastrointestinal conditions, while selectively promoting probiotic lactobacilli. These outcomes resulted in inhibitory effects against various pathogenic bacteria. The in vitro batch culture fermentation of the extract by natural mixed culture indicated that an unknown sugar identified as neokestose was more rapidly fermented than 1-kestose and other longer-chain inulin-FOSs. Notably, neokestose selectively encouraged a bifidogenic effect, specifically in terms of the growth of Bifidobacteirum breve, which is an infant-type probiotic bacterium. This is the first report to state that neokestose could selectively enhance the bifidogenic effect. In summary, inulin-FOSs extract should be recognized as a multifunctional ingredient that can offer benefits in food and pharmaceutical applications.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1670
Author(s):  
Didier Fraisse ◽  
Alexis Bred ◽  
Catherine Felgines ◽  
François Senejoux

Cyanidin-3-O-glucoside (C3G) is a widespread anthocyanin derivative, which has been reported in vitro to exert potent antioxidant, antiglycation and α-glucosidase inhibition effects. Nevertheless, the physiological relevance of such properties remains uncertain considering its significant instability in gastrointestinal conditions. A simulated digestion procedure was thus instigated to assess the influence of gastric and intestinal media on its chemical integrity and biological activities. HPLC analyses of digested C3G samples confirmed the striking impact of intestinal conditions, as attested by a decomposition ratio of 70%. In contrast, with recovery rates of around 90%, antiglycation, as well as DPPH and ABTS scavenging assays, uniformly revealed a noteworthy persistence of its antiglycoxidant capacities. Remarkably, a prominent increase of its α-glucosidase inhibition activity was even observed after the intestinal phase, suggesting that classical in vitro evaluations might underestimate C3G antidiabetic potential. Consequently, the present data provide novel and specific insights on C3G’s digestive fate, suggesting that the gastrointestinal tract does not profoundly affect its positive action on oxidative and carbonyl stresses. More specifically, it also tends to support its regulating effects on postprandial hyperglycemia and its potential usefulness for diabetes management.


2021 ◽  
Vol 14 (10) ◽  
pp. 1050
Author(s):  
Yong Hu ◽  
Johannes Thaler ◽  
Rienk Nieuwland

Milk supports the growth and development of infants. An increasing number of mostly recent studies have demonstrated that milk contains a hitherto undescribed component called extracellular vesicles (EVs). This presents questions regarding why milk contains EVs and what their function is. Recently, we showed that EVs in human milk expose tissue factor, the protein that triggers coagulation or blood clotting, and that milk-derived EVs promote coagulation. Because bovine milk, which also contains EVs, completely lacks this coagulant activity, important differences are present in the biological functions of human milk-derived EVs between species. In this review, we will summarize the current knowledge regarding the presence and biochemical composition of milk EVs, their function(s) and potential clinical applications such as in probiotics, and the unique problems that milk EVs encounter in vivo, including survival of the gastrointestinal conditions encountered in the newborn. The main focus of this review will be human milk-derived EVs, but when available, we will also include information regarding non-human milk for comparison.


Sign in / Sign up

Export Citation Format

Share Document