scholarly journals Ctf4 Links DNA Replication with Sister Chromatid Cohesion Establishment by Recruiting the Chl1 Helicase to the Replisome

2016 ◽  
Vol 63 (3) ◽  
pp. 371-384 ◽  
Author(s):  
Catarina P. Samora ◽  
Julie Saksouk ◽  
Panchali Goswami ◽  
Ben O. Wade ◽  
Martin R. Singleton ◽  
...  
2018 ◽  
Author(s):  
Haitao Sun ◽  
Jiaxin Zhang ◽  
Jingjing Zhang ◽  
Zhen Li ◽  
Qinhong Cao ◽  
...  

AbstractCohesin acetyltransferases Esco1 and Esco2 play a vital role in establishing sister chromatid cohesion. How Esco1 and Esco2 are controlled to achieve this in a DNA replication-coupled manner remains unclear in higher eukaryotes. Here we show that Cul4-RING ligases (CRL4s) play a critical role in sister chromatid cohesion in human cells. Depletion of Cul4A, Cul4B or Ddb1 subunits substantially reduces normal cohesion efficiency. We also show that Mms22L, a vertebrate ortholog of yeast Mms22, is one of Ddb1 and Cul4-associated factors (DCAFs) involved in cohesion. Several lines of evidence suggest a selective interaction of CRL4s with Esco2, but not Esco1. Depletion of either CRL4s or Esco2 causes a defect in Smc3 acetylation which can be rescued by HDAC8 inhibition. More importantly, both CRL4s and PCNA act as mediators for efficiently stabilizing Esco2 on chromatin and catalyzing Smc3 acetylation. Taken together, we propose an evolutionarily conserved mechanism in which CRL4s and PCNA regulate Esco2-dependent establishment of sister chromatid cohesion.Author summaryWe identified human Mms22L as a substrate specific adaptor of Cul4-Ddb1 E3 ubiquitin ligase. Downregulation of Cul4A, Cul4B or Ddb1 subunit causes reduction of acetylated Smc3, via interaction with Esco2 acetyltransferase, and then impairs sister chromatid cohesion in 293T cells. We found functional complementation between Cul4-Ddb1-Mms22L E3 ligase and Esco2 in Smc3 acetylation and sister chromatid cohesion. Interestingly, both Cul4-Ddb1 E3 ubiquitin ligase and PCNA contribute to Esco2 mediated Smc3 acetylation. To summarise, we demonstrated an evolutionarily conserved mechanism in which Cul4-Ddb1 E3 ubiquitin ligases and PCNA regulate Esco2-dependent establishment of sister chromatid cohesion.


2020 ◽  
Vol 78 (4) ◽  
pp. 725-738.e4
Author(s):  
Hon Wing Liu ◽  
Céline Bouchoux ◽  
Mélanie Panarotto ◽  
Yasutaka Kakui ◽  
Harshil Patel ◽  
...  

2005 ◽  
Vol 25 (13) ◽  
pp. 5445-5455 ◽  
Author(s):  
Göran O. Bylund ◽  
Peter M. J. Burgers

ABSTRACT The replication clamp PCNA is loaded around DNA by replication factor C (RFC) and functions in DNA replication and repair. Regulated unloading of PCNA during the progression and termination of DNA replication may require additional factors. Here we show that a Saccharomyces cerevisiae complex required for the establishment of sister chromatid cohesion functions as an efficient unloader of PCNA. Unloading requires ATP hydrolysis. This seven-subunit Ctf18-RFC complex consists of the four small subunits of RFC, together with Ctf18, Dcc1, and Ctf8. Ctf18-RFC was also a weak loader of PCNA onto naked template-primer DNA. However, when the single-stranded DNA template was coated by the yeast single-stranded DNA binding protein replication protein A (RPA) but not by a mutant form of RPA or a heterologous single-stranded DNA binding protein, both binding of Ctf18-RFC to substrate DNA and loading of PCNA were strongly inhibited, and unloading predominated. Neither yeast RFC itself nor two other related clamp loaders, containing either Rad24 or Elg1, catalyzed significant unloading of PCNA. The Dcc1 and Ctf8 subunits of Ctf18-RFC, while required for establishing sister chromatid cohesion in vivo, did not function specifically in PCNA unloading in vitro, thereby separating the functionality of the Ctf18-RFC complex into two distinct paths.


2009 ◽  
Vol 14 (8) ◽  
pp. 949-963 ◽  
Author(s):  
Hiroshi Tanaka ◽  
Yumiko Kubota ◽  
Tsuyoshi Tsujimura ◽  
Maya Kumano ◽  
Hisao Masai ◽  
...  

2021 ◽  
Vol 22 (6) ◽  
pp. 2810
Author(s):  
Ana Boavida ◽  
Diana Santos ◽  
Mohammad Mahtab ◽  
Francesca M. Pisani

Several lines of evidence suggest the existence in the eukaryotic cells of a tight, yet largely unexplored, connection between DNA replication and sister chromatid cohesion. Tethering of newly duplicated chromatids is mediated by cohesin, an evolutionarily conserved hetero-tetrameric protein complex that has a ring-like structure and is believed to encircle DNA. Cohesin is loaded onto chromatin in telophase/G1 and converted into a cohesive state during the subsequent S phase, a process known as cohesion establishment. Many studies have revealed that down-regulation of a number of DNA replication factors gives rise to chromosomal cohesion defects, suggesting that they play critical roles in cohesion establishment. Conversely, loss of cohesin subunits (and/or regulators) has been found to alter DNA replication fork dynamics. A critical step of the cohesion establishment process consists in cohesin acetylation, a modification accomplished by dedicated acetyltransferases that operate at the replication forks. Defects in cohesion establishment give rise to chromosome mis-segregation and aneuploidy, phenotypes frequently observed in pre-cancerous and cancerous cells. Herein, we will review our present knowledge of the molecular mechanisms underlying the functional link between DNA replication and cohesion establishment, a phenomenon that is unique to the eukaryotic organisms.


2019 ◽  
Vol 117 (2) ◽  
pp. 1081-1089 ◽  
Author(s):  
Dawn Bender ◽  
Eulália Maria Lima Da Silva ◽  
Jingrong Chen ◽  
Annelise Poss ◽  
Lauren Gawey ◽  
...  

The tethering together of sister chromatids by the cohesin complex ensures their accurate alignment and segregation during cell division. In vertebrates, sister chromatid cohesion requires the activity of the ESCO2 acetyltransferase, which modifies the Smc3 subunit of cohesin. It was shown recently that ESCO2 promotes cohesion through interaction with the MCM replicative helicase. However, ESCO2 does not significantly colocalize with the MCM complex, suggesting there are additional interactions important for ESCO2 function. Here we show that ESCO2 is recruited to replication factories, sites of DNA replication, through interaction with PCNA. We show that ESCO2 contains multiple PCNA-interaction motifs in its N terminus, each of which is essential to its ability to establish cohesion. We propose that multiple PCNA-interaction motifs embedded in a largely flexible and disordered region of the protein underlie the unique ability of ESCO2 to establish cohesion between sister chromatids precisely as they are born during DNA replication.


Sign in / Sign up

Export Citation Format

Share Document