TLR2 mediates autophagy through ERK signaling pathway in Mycoplasma gallisepticum -infected RAW264.7 cells

2017 ◽  
Vol 87 ◽  
pp. 161-170 ◽  
Author(s):  
Ziyin Lu ◽  
Daoyuan Xie ◽  
Ying Chen ◽  
Erjie Tian ◽  
Ishfaq Muhammad ◽  
...  
2014 ◽  
Vol 19 (1) ◽  
pp. 5-9 ◽  
Author(s):  
Rui Tada ◽  
Yusuke Koide ◽  
Mitsuaki Yamamuro ◽  
Riki Tanaka ◽  
Akira Hidaka ◽  
...  

2020 ◽  
Vol 45 (3) ◽  
Author(s):  
Shufeng Cheng ◽  
Liang Li ◽  
Chunquan Song ◽  
Huijing Jin ◽  
Shouguo Ma ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3573
Author(s):  
Lian-Chun Li ◽  
Zheng-Hong Pan ◽  
De-Sheng Ning ◽  
Yu-Xia Fu

Simonsinol is a natural sesqui-neolignan firstly isolated from the bark of Illicium simonsii. In this study, the anti-inflammatory activity of simonsinol was investigated with a lipopolysaccharide (LPS)-stimulated murine macrophages RAW264.7 cells model. The results demonstrated that simonsinol could antagonize the effect of LPS on morphological changes of RAW264.7 cells, and decrease the production of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) in LPS-stimulated RAW264.7 cells, as determined by Griess assay and enzyme-linked immunosorbent assay (ELISA). Furthermore, simonsinol could downregulate transcription of inducible nitric oxide synthase (iNOS), TNF-α, and IL-6 as measured by reverse transcription polymerase chain reaction (RT-PCR), and inhibit phosphorylation of the alpha inhibitor of NF-κB (IκBα) as assayed by Western blot. In conclusion, these data demonstrate that simonsinol could inhibit inflammation response in LPS-stimulated RAW264.7 cells through the inactivation of the nuclear transcription factor kappa-B (NF-κB) signaling pathway.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoling Li ◽  
Baixin Lin ◽  
Zhiping Lin ◽  
Yucui Ma ◽  
Qu Wang ◽  
...  

AbstractFucosterol, a sterol isolated from brown algae, has been demonstrated to have anti-cancer properties. However, the effects and underlying molecular mechanism of fucosterol on non-small cell lung cancer remain to be elucidated. In this study, the corresponding targets of fucosterol were obtained from PharmMapper, and NSCLC related targets were gathered from the GeneCards database, and the candidate targets of fucosterol-treated NSCLC were predicted. The mechanism of fucosterol against NSCLC was identified in DAVID6.8 by enrichment analysis of GO and KEGG, and protein–protein interaction data were collected from STRING database. The hub gene GRB2 was further screened out and verified by molecular docking. Moreover, the relationship of GRB2 expression and immune infiltrates were analyzed by the TIMER database. The results of network pharmacology suggest that fucosterol acts against candidate targets, such as MAPK1, EGFR, GRB2, IGF2, MAPK8, and SRC, which regulate biological processes including negative regulation of the apoptotic process, peptidyl-tyrosine phosphorylation, positive regulation of cell proliferation. The Raf/MEK/ERK signaling pathway initiated by GRB2 showed to be significant in treating NSCLC. In conclusion, our study indicates that fucosterol may suppress NSCLC progression by targeting GRB2 activated the Raf/MEK/ERK signaling pathway, which laying a theoretical foundation for further research and providing scientific support for the development of new drugs.


2021 ◽  
Vol 275 ◽  
pp. 114129
Author(s):  
Mengqin Liu ◽  
Sha Liu ◽  
Qi Zhang ◽  
Yingqi Fang ◽  
Yanwei Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document