New insight into chemical changes between dissolved organic matter and environmental nano-CuO pollutants binding experiment using multi-spectroscopic techniques

2019 ◽  
Vol 291 ◽  
pp. 111278 ◽  
Author(s):  
Yifan Wang ◽  
Wenzhu Liu ◽  
Ruizhen Li ◽  
Ying Zhang
2015 ◽  
Vol 12 (23) ◽  
pp. 6999-7011 ◽  
Author(s):  
P. Glaz ◽  
J.-P. Gagné ◽  
P. Archambault ◽  
P. Sirois ◽  
C. Nozais

Abstract. Forestry activities in the Canadian Boreal region have increased in the last decades, raising concerns about their potential impact on aquatic ecosystems. Water quality and fluorescence characteristics of dissolved organic matter (DOM) were measured over a 3-year period in eight eastern Boreal Shield lakes: four lakes were studied before, 1 and 2 years after forest harvesting (perturbed lakes) and compared with four undisturbed reference lakes (unperturbed lakes) sampled at the same time. ANOVAs showed a significant increase in total phosphorus (TP) in perturbed lakes when the three sampling dates were considered and in DOC concentrations when considering 1 year before and 1 year after the perturbation only. At 1 year post-clear cutting DOC concentrations were about 15 % greater in the perturbed lakes at ~ 15 mgC L−1 compared to 12.5 mgC L−1 in the unperturbed lakes. In contrast, absorbance and fluorescence measurements showed that all metrics remained within narrow ranges compared to the range observed in natural waters, indicating that forest harvesting did not affect the nature of DOM characterized with spectroscopic techniques. These results confirm an impact of forestry activities 1 year after the perturbation. However, this effect seems to be mitigated 2 years after, indicating that the system shows high resilience and may be able to return to its original condition in terms of water quality parameters assessed in this study.


Sign in / Sign up

Export Citation Format

Share Document