Aggregate formation in fluids with bounded repulsive core and competing interactions

2020 ◽  
Vol 303 ◽  
pp. 112601
Author(s):  
Gianpietro Malescio ◽  
Francesco Sciortino
2015 ◽  
Vol 113 (17-18) ◽  
pp. 2583-2592 ◽  
Author(s):  
G. Cigala ◽  
D. Costa ◽  
J.-M. Bomont ◽  
C. Caccamo

1988 ◽  
Vol 49 (C8) ◽  
pp. C8-1031-C8-1032
Author(s):  
S. Coutinho ◽  
C. R. da Silva

1999 ◽  
Vol 19 (03) ◽  
pp. 134-138
Author(s):  
Gitta Kühnel ◽  
A. C. Matzdorff

SummaryWe studied the effect of GPIIb/IIIa-inhibitors on platelet activation with flow cytometry in vitro. Citrated whole blood was incubated with increasing concentrations of three different GPIIb/IIIa-inhibitors (c7E3, DMP728, XJ757), then thrombin or ADP were added and after 1 min the sample was fixed. Samples without c7E3 but with 0.1 U/ml thrombin had a decrease in platelet count. Samples with increasing concentrations of c7E3 had a lesser or no decrease in platelet count. The two other inhibitors (DMP 725, XJ757) gave similar results. GPIIb/IIIa-inhibitors prevent aggregate formation and more single platelets remain in the blood sample. The agonist-induced decrease in platelet count correlates closely with the concentration of the GPIIb/IIIa inhibitor and receptor occupancy. This correlation may be used as a simple measure for inhibitor activity in whole blood.


1986 ◽  
Vol 55 (02) ◽  
pp. 240-245 ◽  
Author(s):  
M E Rybak

SummaryPlatelet membrane glycoproteins IIb and IIIa and platelet thrombospondin were incorporated onto phosphatidylcholine liposomes, by freeze thawing and sonication. Protein orientation on the liposomes was confirmed by susceptibility to neuraminidase cleavage and binding to lentil lectin-Sepharose (GPIIb-IIIa liposomes) and to heparin-Sepharose (thrombospondin liposomes). Glycoproteins Ilb-IIIa bound 125I-fibrinogen with Kd of 7.5 × 10™7M. Binding was reversible and calcium-dependent. Ilb-IIIa liposomes underwent fibrinogen-dependent aggregation in the presence of 10 mM CaCl2. Maximal aggregate formation was observed with a combination of IIb-IIIa liposomes and thrombospondin liposomes. This aggregation was partially inhibited by preincubation with monoclonal antibodies to the IIb-IIIa complex. Addition of EDTA caused complete reversal of aggregates. Thrombospondin liposomes also underwent fibrinogen and calcium dependent aggregation, however, this aggregation was less than that observed with the GPIIb-IIIa liposomes. Maximal aggregate formation was observed with a mixture of IIb-IIIa liposomes and thrombospondin liposomes. These studies demonstrate that GPIIb-IIIa and thrombospondin can be incorporated into phospholipid vesicles with preservation of function. Direct evidence is provided to demonstrate that glycoprotein lib and Ilia and fibrinogen are sufficient for platelet aggregation and to demonstrate that thrombospondin may also contribute to platelet aggregation.


2016 ◽  
Vol 23 (10) ◽  
pp. 884-891 ◽  
Author(s):  
Mohammad Furkan ◽  
Asim Rizvi ◽  
Mohammad Afsar ◽  
Mohammad Rehan Ajmal ◽  
Rizwan H. Khan ◽  
...  

2021 ◽  
Author(s):  
Hyeong-jun Han ◽  
Jee Young Sung ◽  
Su-Hyeon Kim ◽  
Un-Jung Yun ◽  
Hyeryeong Kim ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kiyoto Kamagata ◽  
Rika Chiba ◽  
Ichiro Kawahata ◽  
Nanako Iwaki ◽  
Saori Kanbayashi ◽  
...  

AbstractLiquid droplets of aggregation-prone proteins, which become hydrogels or form amyloid fibrils, are a potential target for drug discovery. In this study, we proposed an experiment-guided protocol for characterizing the design grammar of peptides that can regulate droplet formation and aggregation. The protocol essentially involves investigation of 19 amino acid additives and polymerization of the identified amino acids. As a proof of concept, we applied this protocol to fused in sarcoma (FUS). First, we evaluated 19 amino acid additives for an FUS solution and identified Arg and Tyr as suppressors of droplet formation. Molecular dynamics simulations suggested that the Arg additive interacts with specific residues of FUS, thereby inhibiting the cation–π and electrostatic interactions between the FUS molecules. Second, we observed that Arg polymers promote FUS droplet formation, unlike Arg monomers, by bridging the FUS molecules. Third, we found that the Arg additive suppressed solid aggregate formation of FUS, while Arg polymer enhanced it. Finally, we observed that amyloid-forming peptides induced the conversion of FUS droplets to solid aggregates of FUS. The developed protocol could be used for the primary design of peptides controlling liquid droplets and aggregates of proteins.


2021 ◽  
Vol 36 (1) ◽  
pp. 785-789
Author(s):  
Ramona Vinci ◽  
Daniela Pedicino ◽  
Alessia D’Aiello ◽  
Pellegrino Ciampi ◽  
Myriana Ponzo ◽  
...  

Atoms ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 33
Author(s):  
R.I. Campeanu ◽  
Colm T. Whelan

Triple differential cross sections (TDCS) are presented for the electron and positron impact ionization of inert gas atoms in a range of energy sharing geometries where a number of significant few body effects compete to define the shape of the TDCS. Using both positrons and electrons as projectiles has opened up the possibility of performing complementary studies which could effectively isolate competing interactions that cannot be separately detected in an experiment with a single projectile. Results will be presented in kinematics where the electron impact ionization appears to be well understood and using the same kinematics positron cross sections will be presented. The kinematics are then varied in order to focus on the role of distortion, post collision interaction (pci), and interference effects.


Sign in / Sign up

Export Citation Format

Share Document