Mechanistic study to investigate the injection of surfactant assisted smart water in carbonate rocks for enhanced oil recovery: An experimental approach

2020 ◽  
pp. 114648
Author(s):  
Alireza Tajikmansori ◽  
Mostafa Hosseini ◽  
Amir Hossein Saeedi Dehaghani
2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Malek Jalilian ◽  
Peyman Pourafshary ◽  
Behnam Sedaee Sola ◽  
Mosayyeb Kamari

Designing smart water (SW) by optimizing the chemical composition of injected brine is a promising low-cost technique that has been developed for both sandstone and carbonate reservoirs for several decades. In this study, the impact of SW flooding during tertiary oil recovery phase was investigated by core flooding analysis of pure limestone carbonate rocks. Increasing the sulfate ion concentration by using CaSO4 and MgSO4 of NaCl concentration and finally reducing the total salinity were the main manipulations performed to optimize SW. The main objective of this research is to compare active cations including Ca2+ and Mg2+ in the presence of sulfate ions (SO42−) with regard to their efficiency in the enhancement of oil production during SW flooding of carbonate cores. The results revealed a 14.5% increase in the recovery factor by CaSO4 proving its greater effectiveness compared to MgSO4, which led to an 11.5% production enhancement. It was also realized that low-salinity water flooding (LSWF) did not lead to a significant positive effect as it contributed less than 2% in the tertiary stage.


2020 ◽  
Vol 17 (5) ◽  
pp. 1318-1328
Author(s):  
Sara Habibi ◽  
Arezou Jafari ◽  
Zahra Fakhroueian

Abstract Smart water flooding, as a popular method to change the wettability of carbonate rocks, is one of the interesting and challenging issues in reservoir engineering. In addition, the recent studies show that nanoparticles have a great potential for application in EOR processes. However, little research has been conducted on the use of smart water with nanoparticles in enhanced oil recovery. In this study, stability, contact angle and IFT measurements and multi-step core flooding tests were designed to investigate the effect of the ionic composition of smart water containing SO42− and Ca2+ ions in the presence of nanofluid on EOR processes. The amine/organosiloxane@Al2O3/SiO2 (AOAS) nanocomposite previously synthesized using co-precipitation-hydrothermal method has been used here. However, for the first time the application of this nanocomposite along with smart water has been studied in this research. Results show that by increasing the concentrations of calcium and sulfate ions in smart water, oil recovery is improved by 9% and 10%, respectively, compared to seawater. In addition, the use of smart water and nanofluids simultaneously is very effective on increasing oil recovery. Finally, the best performance was observed in smart water containing two times of sulfate ions concentration (SW2S) with nanofluids, showing increased efficiency of about 7.5%.


Sign in / Sign up

Export Citation Format

Share Document